CC BY-NC-ND 4.0 · Thromb Haemost 2021; 121(06): 741-754
DOI: 10.1055/s-0040-1721505
Endothelium and Angiogenesis

Endothelial β1 Integrin-Mediated Adaptation to Myocardial Ischemia

Carina Henning*
1   Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
,
Anna Branopolski*
1   Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
2   Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
,
Paula Follert
1   Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
,
Oksana Lewandowska
1   Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
,
Aysel Ayhan
2   Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
,
Marcel Benkhoff
2   Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
,
Ulrich Flögel
3   Institute for Molecular Cardiology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
,
Malte Kelm
2   Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
,
2   Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich-Heine-University, Düsseldorf, Germany
4   Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
5   Surrey and Sussex Healthcare NHS Trust, Redhill, Surrey, United Kingdom
,
Eckhard Lammert*
1   Institute of Metabolic Physiology, Department of Biology, Heinrich-Heine-University, Düsseldorf, Germany
6   Institute for Vascular and Islet Cell Biology, German Diabetes Center (DDZ)—Leibniz Center for Diabetes Research, Düsseldorf, Germany
7   German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
› Author Affiliations
Funding This project was supported and funded by the Deutsche Forschungsgemeinschaft (DFG) through the SFB 1116 (“Master Switches in Cardiac Ischemia”), the SFB 974 (“Communication and Systems Relevance during Liver Damage and Regeneration”), the IRTG 1902 (“Intra- and Interorgan Communication of the Cardiovascular System”) and the Federal Ministry of Health, the Ministry of Culture and Science of North Rhine-Westphalia, and the German Center for Diabetes Research (DZD e.V.).

Abstract

Background Short episodes of myocardial ischemia can protect from myocardial infarction. However, the role of endothelial β1 integrin in these cardioprotective ischemic events is largely unknown.

Objective In this study we investigated whether endothelial β1 integrin is required for cardiac adaptation to ischemia and protection from myocardial infarction.

Methods Here we introduced transient and permanent left anterior descending artery (LAD) occlusions in mice. We inhibited β1 integrin by intravenous injection of function-blocking antibodies and tamoxifen-induced endothelial cell (EC)-specific deletion of Itgb1. Furthermore, human ITGB1 was silenced in primary human coronary artery ECs using small interfering RNA. We analyzed the numbers of proliferating ECs and arterioles by immunohistochemistry, determined infarct size by magnetic resonance imaging (MRI) and triphenyl tetrazolium chloride staining, and analyzed cardiac function by MRI and echocardiography.

Results Transient LAD occlusions were found to increase EC proliferation and arteriole formation in the entire myocardium. These effects required β1 integrin on ECs, except for arteriole formation in the ischemic part of the myocardium. Furthermore, this integrin subunit was also relevant for basal and mechanically induced proliferation of human coronary artery ECs. Notably, β1 integrin was needed for cardioprotection induced by transient LAD occlusions, and the absence of endothelial β1 integrin resulted in impaired growth of blood vessels into the infarcted myocardium and reduced cardiac function after permanent LAD occlusion.

Conclusion We showed that endothelial β1 integrin is required for adaptation of the heart to cardiac ischemia and protection from myocardial infarction.

* These authors contributed equally to this work.


Supplementary Material



Publication History

Received: 22 October 2020

Accepted: 28 October 2020

Article published online:
14 January 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390 (10106): 1151-1210
  • 2 Benjamin EJ, Virani SS, Callaway CW. et al; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 2018; 137 (12) e67-e492
  • 3 Cannon B. Cardiovascular disease: biochemistry to behaviour. Nature 2013; 493 (7434): S2-S3
  • 4 Lavine KJ, Kovacs A, Weinheimer C, Mann DL. Repetitive myocardial ischemia promotes coronary growth in the adult mammalian heart. J Am Heart Assoc 2013; 2 (05) e000343
  • 5 Gloekler S, Seiler C. Cardiology patient page. Natural bypasses can save lives. Circulation 2007; 116 (11) e340-e341
  • 6 Seiler C, Stoller M, Pitt B, Meier P. The human coronary collateral circulation: development and clinical importance. Eur Heart J 2013; 34 (34) 2674-2682
  • 7 Jamaiyar A, Juguilon C, Dong F. et al. Cardioprotection during ischemia by coronary collateral growth. Am J Physiol Heart Circ Physiol 2019; 316 (01) H1-H9
  • 8 Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6 (04) 389-395
  • 9 Cochain C, Channon KM, Silvestre JS. Angiogenesis in the infarcted myocardium. Antioxid Redox Signal 2013; 18 (09) 1100-1113
  • 10 Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 2016; 17 (10) 611-625
  • 11 Ingber D. Integrins as mechanochemical transducers. Curr Opin Cell Biol 1991; 3 (05) 841-848
  • 12 Planas-Paz L, Strilić B, Goedecke A, Breier G, Fässler R, Lammert E. Mechanoinduction of lymph vessel expansion. EMBO J 2012; 31 (04) 788-804
  • 13 Ross TD, Coon BG, Yun S. et al. Integrins in mechanotransduction. Curr Opin Cell Biol 2013; 25 (05) 613-618
  • 14 Sun Z, Costell M, Fässler R. Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol 2019; 21 (01) 25-31
  • 15 Somanath PR, Ciocea A, Byzova TV. Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 2009; 53 (02) 53-64
  • 16 Tugues S, Honjo S, König C. et al. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo. J Biol Chem 2013; 288 (26) 19060-19071
  • 17 Thodeti CK, Matthews B, Ravi A. et al. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 2009; 104 (09) 1123-1130
  • 18 Lorenz L, Axnick J, Buschmann T. et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 2018; 562 (7725): 128-132
  • 19 Lei L, Liu D, Huang Y. et al. Endothelial expression of beta1 integrin is required for embryonic vascular patterning and postnatal vascular remodeling. Mol Cell Biol 2008; 28 (02) 794-802
  • 20 Tanjore H, Zeisberg EM, Gerami-Naini B, Kalluri R. Beta1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis. Dev Dyn 2008; 237 (01) 75-82
  • 21 Carlson TR, Hu H, Braren R, Kim YH, Wang RA. Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 2008; 135 (12) 2193-2202
  • 22 Zovein AC, Luque A, Turlo KA. et al. Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 2010; 18 (01) 39-51
  • 23 Yamamoto H, Ehling M, Kato K. et al. Integrin β1 controls VE-cadherin localization and blood vessel stability. Nat Commun 2015; 6: 6429
  • 24 Lindsey ML, Iyer RP, Zamilpa R. et al. A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol 2015; 66 (12) 1364-1374
  • 25 Martin K, Pritchett J, Llewellyn J. et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun 2016; 7: 12502
  • 26 Abraham S, Kogata N, Fässler R, Adams RH. Integrin beta1 subunit controls mural cell adhesion, spreading, and blood vessel wall stability. Circ Res 2008; 102 (05) 562-570
  • 27 Mishina H, Watanabe K, Tamaru S. et al. Lack of phospholipase A2 receptor increases susceptibility to cardiac rupture after myocardial infarction. Circ Res 2014; 114 (03) 493-504
  • 28 Li R, Wu Y, Manso AM. et al. β1 integrin gene excision in the adult murine cardiac myocyte causes defective mechanical and signaling responses. Am J Pathol 2012; 180 (03) 952-962
  • 29 Okada H, Lai NC, Kawaraguchi Y. et al. Integrins protect cardiomyocytes from ischemia/reperfusion injury. J Clin Invest 2013; 123 (10) 4294-4308
  • 30 Bolli R. Preconditioning: a paradigm shift in the biology of myocardial ischemia. Am J Physiol Heart Circ Physiol 2007; 292 (01) H19-H27
  • 31 Bolli R, Li QH, Tang XL. et al. The late phase of preconditioning and its natural clinical application--gene therapy. Heart Fail Rev 2007; 12 (3–4): 189-199
  • 32 Dawn B, Bolli R. Role of nitric oxide in myocardial preconditioning. Ann N Y Acad Sci 2002; 962: 18-41
  • 33 Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 2015; 116 (04) 674-699
  • 34 Lindsey ML, Bolli R, Canty Jr JM. et al. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314 (04) H812-H838
  • 35 Shesely EG, Maeda N, Kim HS. et al. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 1996; 93 (23) 13176-13181
  • 36 Benedito R, Roca C, Sörensen I. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 2009; 137 (06) 1124-1135
  • 37 Potocnik AJ, Brakebusch C, Fässler R. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 2000; 12 (06) 653-663
  • 38 Bönner F, Jacoby C, Temme S. et al. Multifunctional MR monitoring of the healing process after myocardial infarction. Basic Res Cardiol 2014; 109 (05) 430
  • 39 Erkens R, Kramer CM, Lückstädt W. et al. Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radic Biol Med 2015; 89: 906-917
  • 40 Zhang H, Faber JE. De-novo collateral formation following acute myocardial infarction: dependence on CCR2+ bone marrow cells. J Mol Cell Cardiol 2015; 87: 4-16
  • 41 Henning C, Branopolski A, Schuler D. et al. Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia. Sci Rep 2019; 9 (01) 16931
  • 42 Yang B, Rizzo V. Shear stress activates eNOS at the endothelial apical surface through β1 containing integrins and caveolae. Cell Mol Bioeng 2013; 6 (03) 346-354
  • 43 Xanthis I, Souilhol C, Serbanovic-Canic J. et al. β1 integrin is a sensor of blood flow direction. J Cell Sci 2019; 132 (11) jcs229542
  • 44 Israeli-Rosenberg S, Manso AM, Okada H, Ross RS. Integrins and integrin-associated proteins in the cardiac myocyte. Circ Res 2014; 114 (03) 572-586
  • 45 Hodgkinson CP, Gomez JA, Payne AJ. et al. Abi3bp regulates cardiac progenitor cell proliferation and differentiation. Circ Res 2014; 115 (12) 1007-1016
  • 46 Krishnamurthy P, Subramanian V, Singh M, Singh K. Deficiency of beta1 integrins results in increased myocardial dysfunction after myocardial infarction. Heart 2006; 92 (09) 1309-1315
  • 47 Shai SY, Harpf AE, Babbitt CJ. et al. Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res 2002; 90 (04) 458-464
  • 48 Li L, Guan Q, Dai S, Wei W, Zhang Y. Integrin β1 increases stem cell survival and cardiac function after myocardial infarction. Front Pharmacol 2017; 8: 135
  • 49 Hakanpaa L, Kiss EA, Jacquemet G. et al. Targeting β1-integrin inhibits vascular leakage in endotoxemia. Proc Natl Acad Sci U S A 2018; 115 (28) E6467-E6476
  • 50 van der Vorst EPC, Weber C. Novel features of monocytes and macrophages in cardiovascular biology and disease. Arterioscler Thromb Vasc Biol 2019; 39 (02) e30-e37
  • 51 Zernecke A, Bernhagen J, Weber C. Macrophage migration inhibitory factor in cardiovascular disease. Circulation 2008; 117 (12) 1594-1602
  • 52 Mac Gabhann F, Peirce SM. Collateral capillary arterialization following arteriolar ligation in murine skeletal muscle. Microcirculation 2010; 17 (05) 333-347
  • 53 Das S, Goldstone AB, Wang H. et al. A unique collateral artery development program promotes neonatal heart regeneration. Cell 2019; 176 (05) 1128.e18-1142.e18
  • 54 Pitulescu ME, Schmidt I, Giaimo BD. et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 2017; 19 (08) 915-927
  • 55 la Sala A, Pontecorvo L, Agresta A, Rosano G, Stabile E. Regulation of collateral blood vessel development by the innate and adaptive immune system. Trends Mol Med 2012; 18 (08) 494-501
  • 56 Yue Y, Wang C, Benedict C. et al. Interleukin-10 deficiency alters endothelial progenitor cell-derived exosome reparative effect on myocardial repair via integrin-linked kinase enrichment. Circ Res 2020; 126 (03) 315-329