CC BY-NC-ND 4.0 · Organic Materials 2021; 03(01): 051-059
DOI: 10.1055/s-0041-1722848
Focus Issue: Curved Organic π-Systems
Original Article

Heptagon-Containing Saddle-Shaped Nanographenes: Self-Association and Complexation Studies with Polycyclic Aromatic Hydrocarbons and Fullerenes

a  Department of Organic Chemistry, Faculty of Sciences, University of Granada. Avda. Fuente Nueva S/N, 18071, Granada, Spain
,
a  Department of Organic Chemistry, Faculty of Sciences, University of Granada. Avda. Fuente Nueva S/N, 18071, Granada, Spain
,
a  Department of Organic Chemistry, Faculty of Sciences, University of Granada. Avda. Fuente Nueva S/N, 18071, Granada, Spain
,
a  Department of Organic Chemistry, Faculty of Sciences, University of Granada. Avda. Fuente Nueva S/N, 18071, Granada, Spain
,
a  Department of Organic Chemistry, Faculty of Sciences, University of Granada. Avda. Fuente Nueva S/N, 18071, Granada, Spain
,
a  Department of Organic Chemistry, Faculty of Sciences, University of Granada. Avda. Fuente Nueva S/N, 18071, Granada, Spain
› Institutsangaben
Funding Information We acknowledge FEDER/Junta de Andalucía (A-FQM-339-UGR18, Programa Operativo FEDER 2014-2020, Consejería de Economía y Conocimiento), the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (ERC-2015-STG-677023), and Ministerio de Ciencia, Innovación y Universidades (MICIU/FEDER/AEI, Spain; PGC2018-101181-B-I00) for financial support.


Abstract

Supramolecular interactions between molecules of the same or different nature determine to a great extent the degree of their applicability in many fields of science. To this regard, planar polycyclic aromatic hydrocarbons (PAHs) and their nanometric congeners, nanographenes (NGs), as well as positively curved ones, as for instance corannulene, have been extensively explored. However, negatively curved saddle-shaped NGs have remained a curiosity to date within this field. Therefore, here we communicate the first systematic study on the supramolecular behavior of heptagon-containing hexa-peri-hexabenzocoronene analogues. Thus, their self-association and host–guest complexation processes with both flat and curved PAHs, and fullerenes have been studied by means of 1H and 13C NMR titrations in solution, identifying C70 as one of the guests with the highest association constant among all the ones tested.

Supporting Information

Supporting Information for this article is available online at https://doi.org/10.1055/s-0041-1722848.


Supporting Information



Publikationsverlauf

Eingereicht: 16. Oktober 2020

Angenommen: 14. Dezember 2020

Publikationsdatum:
08. Februar 2021 (online)

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Steed JW, Atwood JL. Supramolecular Chemistry, 2nd Edition. John Wiley & Sons; Chichester: 2009
  • 2 Wu J, Fechtenkötter A, Gauss J, Watson MD, Kastler M, Fechtenkötter C, Wagner M, Müllen K. J. Am. Chem. Soc. 2004; 126: 11311
  • 3 Kastler M, Pisula W, Wasserfallen D, Pakula T, Müllen K. J. Am. Chem. Soc. 2005; 127: 4286
  • 4 Herwig P, Kayser CW, Müllen K, Spiess HW. Adv. Mater. 1996; 8: 510
  • 5 Schmidt-Mende L, Fechtenkötter A, Müllen K, Moons E, Friend RH, MacKenzie JD. Science 2001; 293: 1119
  • 6 Wong WW. H, Subbiah J, Puniredd SR, Purushothaman B, Pisula W, Kirby N, Müllen K, Jones DJ, Holmes AB. J. Mater. Chem. 2012; 22: 21131
  • 7 Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science 2004; 304: 1481
  • 8 Kulkarni C, Munirathinam R, George SJ. Chem. Eur. J. 2013; 19: 11270
  • 9 Yamamoto Y, Fukushima T, Jin W, Kosaka A, Hara T, Nakamura T, Saeki A, Seki S, Tagawa S, Aida T. Adv. Mater. 2006; 18: 1297
  • 10 Yamamoto Y, Fukushima T, Suna Y, Ishii N, Saeki A, Seki S, Tagawa S, Taniguchi M, Kawai T, Aida T. Science 2006; 314: 1761
  • 11 Treier M, Liscio A, Mativetsky JM, Kastler M, Müllen K, Palermo V, Samorì P. Nanoscale 2012; 4: 1677
  • 12 Mogera U, Gedda M, George SJ, Kulkarni GU. ACS Appl. Mater. Interfaces 2017; 9: 32065
  • 13 Mogera U, Sagade AA, George SJ, Kulkarni GU. Sci. Rep. 2014; 4: 4103
  • 14 Kulkarni C, Mondal AK, Das TK, Grinbom G, Tassinari F, Mabesoone MF. J, Meijer EW, Naaman R. Adv. Mater. 2020; 32: 1904965
  • 15 Ito S, Herwig PT, Böhme T, Rabe JP, Rettig W, Müllen K. J. Am. Chem. Soc. 2000; 122: 7698
  • 16 Li G, Matsuno T, Han Y, Phan H, Wu S, Jiang Q, Zou Y, Isobe H, Wu J. Angew. Chem. Int. Ed. 2020; 59: 9727
  • 17 Lu D, Zhuang G, Wu H, Wang S, Yang S, Du P. Angew. Chem. Int. Ed. 2017; 56: 158
  • 18 Cui S, Zhuang G, Lu D, Huang Q, Jia H, Wang Y, Yang S, Du P. Angew. Chem. Int. Ed. 2018; 57: 9330
  • 19 Huang Q, Zhuang G, Jia H, Qian M, Cui S, Yang S, Du P. Angew. Chem. Int. Ed. 2019; 58: 6244
  • 20 Lu D, Huang Q, Wang S, Wang J, Huang P, Du P. Front. Chem. 2019; 7: 668
  • 21 Xu Y, von Delius M. Angew. Chem. Int. Ed. 2020; 59: 559
  • 22 Suzuki K, Takao K, Sato S, Fujita M. J. Am. Chem. Soc. 2010; 132: 2544
  • 23 Ronson TK, League AB, Gagliardi L, Cramer CJ, Nitschke JR. J. Am. Chem. Soc. 2014; 136: 15615
  • 24 Ronson TK, Meng W, Nitschke JR. J. Am. Chem. Soc. 2017; 139: 9698
  • 25 Yamashina M, Tanaka Y, Lavendomme R, Ronson TK, Pittelkow M, Nitschke JR. Nature 2019; 574: 511
  • 26 Dale EJ, Vermeulen NA, Juríček M, Barnes JC, Young RM, Wasielewski MR, Stoddart JF. Acc. Chem. Res. 2016; 49: 262
  • 27 Liu XT, Wang K, Chang Z, Zhang YH, Xu J, Zhao YS, Bu XH. Angew. Chem. Int. Ed. 2019; 58: 13890
  • 28 Lozano D, Álvarez-Yebra R, López-Coll R, Lledó A. Chem. Sci. 2019; 10: 10351
  • 29 Ibáñez S, Peris E. Angew. Chem. Int. Ed. 2020; 59: 6860
  • 30 Blanco V, García MD, Terenzi A, Pía E, Fernández-Mato A, Peinador C, Quintela JM. Chem. Eur. J. 2010; 16: 12373
  • 31 Schmidt BM, Osuga T, Sawada T, Hoshino M, Fujita M. Angew. Chem. Int. Ed. 2016; 55: 1561
  • 32 Joshi H, Sreejith S, Dey R, Stuparu MC. RSC Adv. 2016; 6: 110001
  • 33 Fan QJ, Lin YJ, Hahn FE, Jin GX. Dalton Trans. 2018; 47: 2240
  • 34 Mizyed S, Georghiou PE, Bancu M, Cuadra B, Rai AK, Cheng P, Scott LT. J. Am. Chem. Soc. 2001; 123: 12770
  • 35 Georghiou PE, Tran AH, Mizyed S, Bancu M, Scott LT. J. Org. Chem. 2005; 70: 6158
  • 36 Sygula A, Fronczek FR, Sygula R, Rabideau PW, Olmstead MM. J. Am. Chem. Soc. 2007; 129: 3842
  • 37 Yanney M, Sygula A. Tetrahedron Lett. 2013; 54: 2604
  • 38 Barbero H, Ferrero S, Álvarez-Miguel L, Gómez-Iglesias P, Miguel D, Álvarez CM. Chem. Commun. 2016; 52: 12964
  • 39 Miyajima D, Tashiro K, Araoka F, Takezoe H, Kim J, Kato K, Takata M, Aida T. J. Am. Chem. Soc. 2009; 131: 44
  • 40 Mattarella M, Haberl JM, Ruokolainen J, Landau EM, Mezzenga R, Siegel JS. Chem. Commun. 2013; 49: 7204
  • 41 Kang J, Miyajima D, Mori T, Inoue Y, Itoh Y, Aida T. Science 2015; 347: 646
  • 42 Mattarella M, Berstis L, Baldridge KK, Siegel JS. Bioconjugate Chem. 2014; 25: 115
  • 43 Márquez IR, Castro-Fernández S, Millán A, Campaña AG. Chem. Commun. 2018; 54: 6705
  • 44 Pun SH, Miao Q. Acc. Chem. Res. 2018; 51: 1630
  • 45 Guan Y, Jones ML, Miller AE, Wheeler SE. Phys. Chem. Chem. Phys. 2017; 19: 18186
  • 46 Gu X, Li H, Shan B, Liu Z, Miao Q. Org. Lett. 2017; 19: 2246
  • 47 Jiménez VG, David AH. G, Cuerva JM, Blanco V, Campaña AG. Angew. Chem. Int. Ed. 2020; 59: 15124
  • 48 Zhai L, Shukla R, Rathore R. Org. Lett. 2009; 11: 3474
  • 49 Márquez IR, Fuentes N, Cruz CM, Puente-Muñoz V, Sotorrios L, Marcos ML, Choquesillo-Lazarte D, Biel B, Crovetto L, Gómez-Bengoa E, González MT, Martin R, Cuerva JM, Campaña AG. Chem. Sci. 2017; 8: 1068
  • 50 Cheung KY, Xu X, Miao Q. J. Am. Chem. Soc. 2015; 137: 3910
  • 51 Castro-Fernández S, Cruz CM, Mariz IF. A, Márquez IR, Jiménez VG, Palomino-Ruiz L, Cuerva JM, Maçôas E, Campaña AG. Angew. Chem. Int. Ed. 2020; 59: 7139
  • 52 Chu M, Scioneaux AN, Hartley CS. J. Org. Chem. 2014; 79: 9009
  • 53 Martin RB. Chem. Rev. 1996; 96: 3043
  • 54 Chen Z, Lohr A, Saha-Möller CR, Würthner F. Chem. Soc. Rev. 2009; 38: 564
  • 55 David AH. G, García-Cerezo P, Campaña AG, Santoyo-González F, Blanco V. Chem. Eur. J. 2019; 25: 6170
  • 56 http://supramolecular.org/ (January 4, 2021)
  • 57 Thordarson P. Chem. Soc. Rev. 2011; 40: 1305
  • 58 The K a values presented have not been corrected to take into account the influence of the self-association of the hept-HBC derivatives or the guests benzo[a]pyrene or 8, which also have some tendency to self-associate. These processes can be included in the binding in some cases assuming the simpler monomer–dimer model to study the self-association and considering that the self-assembled species (i.e., dimers) can also form heteroassemblies as they have two π surfaces available. However, a maximum variation of ca. 10% was observed in the values of the binding constants, so this effect can be omitted in a reasonable approximation
  • 59 Coulson DR, Satek LC, Grim SO. Inorg. Synth. 1972; 13: 121
  • 60 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision B.01. Gaussian, Inc.; Wallingford, CT: 2010