Journal of Pediatric Epilepsy 2021; 10(02): 045-050
DOI: 10.1055/s-0041-1722870
Review Article

Are Absence and Limbic Seizures Mutually Exclusive?: An Experimental Approach to Enigmatic Clinical Concept

1   Department of Medical Pharmacology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
2   Department of Medical Pharmacology, Faculty of Medicine, Marmara University, Istanbul, Turkey
,
Esat Eşkazan
3   Department of Pharmacology, Cerrahpaşa School of Medicine, Istanbul, Turkey
› Institutsangaben
Funding None.

Abstract

The impressive advances in the several disciplines including neurophysiology, molecular biology, neuroimmunology, neurogenetics, neuroimaging, and neuropharmacology of epilepsies have been stimulating a mutual interaction among basic scientists, clinicians, and professionals from other disciplines, leading to the identification of clinical questions and then the design of basic science paradigms to test enigmatic clinical issues. Based on a clinical observation that the coexistence of genetic (idiopathic) generalized typical absence and mesial temporal lobe epilepsy in the same patient is extremely rare and debatable, we addressed the rare coexistence in the same individual, designed an experimental approach to test the validity of this clinical concept and to study the underlying mechanisms involved. Here we presented evidence of a mutual cross-interaction in the circuits involved in typical absence and temporal lobe epilepsy. This article delineates a phenomenological picture and comprehends a theoretical understanding of a mutual cross-interaction in typical absence as a representative of genetic generalized epilepsies and limbic epilepsy in which seizures often start from the mesial temporal lobe.



Publikationsverlauf

Eingereicht: 01. Dezember 2020

Angenommen: 01. Dezember 2020

Artikel online veröffentlicht:
02. Februar 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Geller EB, Lancman ME, Van Ness PC. et al. Coexistence of generalized and partial epilepsies. Electroencephalogr Clin Neurophysiol 1995; 2 (95) 17P
  • 2 Sofue A, Okumura A, Negoro T. et al. Absence seizures in patients with localization-related epilepsy. Brain Dev 2003; 25 (06) 422-426
  • 3 Lüttjohann A, van Luijtelaar G. Dynamics of networks during absence seizure's on- and offset in rodents and man. Front Physiol 2015; 6: 16
  • 4 Koutroumanidis M, Hennessy MJ, Elwes RD, Binnie CD, Polkey CE. Coexistence of temporal lobe and idiopathic generalized epilepsies. Neurology 1999; 53 (03) 490-495
  • 5 Nicolson A, Chadwick DW, Smith DF. The coexistence of idiopathic generalized epilepsy and partial epilepsy. Epilepsia 2004; 45 (06) 682-685
  • 6 Jeha LE, Morris HH, Burgess RC. Coexistence of focal and idiopathic generalized epilepsy in the same patient population. Seizure 2006; 15 (01) 28-34
  • 7 Whelan CD, Altmann A, Botía JA. et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain 2018; 141 (02) 391-408
  • 8 Italiano D, Ferlazzo E, Gasparini S. et al. Generalized versus partial reflex seizures: a review. Seizure 2014; 23 (07) 512-520
  • 9 Aker RG, Yananli HR, Gurbanova AA. et al. Amygdala kindling in the WAG/Rij rat model of absence epilepsy. Epilepsia 2006; 47 (01) 33-40
  • 10 Putnam TJ, Merritt HH. Experimental determination of the anticonvulsant properties of some phenyl derivatives. Science 1937; 85 (2213): 525-526
  • 11 Kostopoulos GK. Pharmacologically Induced Animal Models of Absence Seizures. In: Pitkanen A, Buckmaster PS, Galanopoulou AS, Moshé SL. eds. Models of Seizures and Epilepsy. USA: Elsevier Inc, Academic Press; 2017: 553-567
  • 12 Cortez MA, Snead OC. Pharmacologic models of generalized absence seizures in rodents. In: Pitkanen A, Schwartzkroin PA, Moshé SL. eds. Models of Seizures and Epilepsy. USA: Elsevier Inc, Academic Press; 2006: 111-126
  • 13 Onat FY, van Luijtelaar G, Nehlig A, Snead III OC. The involvement of limbic structures in typical and atypical absence epilepsy. Epilepsy Res 2013; 103 (2-3): 111-123
  • 14 Löscher W. Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 2016; 126: 157-184
  • 15 Barker-Haliski M, SteveWhite H. Validated animal models for antiseizure drug (ASD) discovery: advantages and potential pitfalls in ASD screening. Neuropharmacology 2020; 167
  • 16 Coenen AM, Van Luijtelaar EL. The WAG/Rij rat model for absence epilepsy: age and sex factors. Epilepsy Res 1987; 1 (05) 297-301
  • 17 Cortez MA, Perez Velazquez JL, Snead III OC. Animal models of epilepsy and progressive effects of seizures. Adv Neurol 2006; 97: 293-304
  • 18 Crunelli V, Leresche N. Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 2002; 3 (05) 371-382
  • 19 Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 1998; 55 (01) 27-57
  • 20 Akman O, Demiralp T, Ateş N, Onat FY. Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy. Epilepsy Res 2010; 89 (2-3): 185-193
  • 21 Bertram EH. Temporal lobe epilepsy: where do the seizures really begin?. Epilepsy Behav 2009; 14 (1, Suppl 1): 32-37
  • 22 Perucca P. Genetics of focal epilepsies: what do we know and where are we heading?. Epilepsy Curr 2018; 18 (06) 356-362
  • 23 Sloviter RS, Bumanglag AV. Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology 2013; 69: 3-15
  • 24 Engel Jr J. Mesial temporal lobe epilepsy: what have we learned?. Neuroscientist 2001; 7 (04) 340-352
  • 25 Sato M, Racine RJ, McIntyre DC. Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 1990; 76 (05) 459-472
  • 26 Goddard GV. Development of epileptic seizures through brain stimulation at low intensity. Nature 1967; 214 (5092): 1020-1021
  • 27 McIntyre DC, Racine RJ. Kindling mechanisms: current progress on an experimental epilepsy model. Prog Neurobiol 1986; 27 (01) 1-12
  • 28 Bertram E. The relevance of kindling for human epilepsy. Epilepsia 2007; 48 (Suppl. 02) 65-74
  • 29 McIntyre DC, Gilby KL. Kindling as a model of human epilepsy. Can J Neurol Sci 2009; 36 (Suppl. 02) S33-S35
  • 30 Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989; 26 (03) 321-330
  • 31 Cavazos JE, Golarai G, Sutula TP. Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J Neurosci 1991; 11 (09) 2795-2803
  • 32 Eşkazan E, Onat FY, Aker R, Oner G. Resistance to propagation of amygdaloid kindling seizures in rats with genetic absence epilepsy. Epilepsia 2002; 43 (10) 1115-1119
  • 33 Onat FY, Eşkazan E, Aker R. Experimental absence versus amygdaloid kindling. Kindling 6. Boston, MA: Springer; 37-47 2005
  • 34 Akman O, Karson A, Aker RG, Ates N, Onat FY. Hippocampal kindling in rats with absence epilepsy resembles amygdaloid kindling. Epilepsy Res 2008; 81 (2-3): 211-219
  • 35 Carçak N, Aker RG, Özdemir O, Demiralp T, Onat FY. The relationship between age-related development of spike-and-wave discharges and the resistance to amygdaloid kindling in rats with genetic absence epilepsy. Neurobiol Dis 2008; 32 (03) 355-363
  • 36 Bertram EH. Neuronal circuits in epilepsy: do they matter?. Exp Neurol 2013; 244: 67-74
  • 37 Gurbanova AA, Aker RG, Sirvanci S, Demiralp T, Onat FY. Intra-amygdaloid injection of kainic acid in rats with genetic absence epilepsy: the relationship of typical absence epilepsy and temporal lobe epilepsy. J Neurosci 2008; 28 (31) 7828-7836
  • 38 Medvedev A, Mackenzie L, Hiscock JJ, Willoughby JO. Kainic acid induces distinct types of epileptiform discharge with differential involvement of hippocampus and neocortex. Brain Res Bull 2000; 52 (02) 89-98
  • 39 Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 2005; 116 (12) 2719-2733
  • 40 Vergnes M, Boehrer A, Reibel S, Simler S, Marescaux C. Selective susceptibility to inhibitors of GABA synthesis and antagonists of GABA(A) receptor in rats with genetic absence epilepsy. Exp Neurol 2000; 161 (02) 714-723
  • 41 Glasscock E, Qian J, Yoo JW, Noebels JL. Masking epilepsy by combining two epilepsy genes. Nat Neurosci 2007; 10 (12) 1554-1558
  • 42 Nanobashvili Z, Chachua T, Nanobashvili A, Bilanishvili I, Lindvall O, Kokaia Z. Suppression of limbic motor seizures by electrical stimulation in thalamic reticular nucleus. Exp Neurol 2003; 181 (02) 224-230
  • 43 Onat FY, Aker RG, Gurbanova AA, Ateş N, van Luijtelaar G. The effect of generalized absence seizures on the progression of kindling in the rat. Epilepsia 2007; 48 (Suppl. 05) 150-156
  • 44 Carçak N, Ferrandon A, Koning E. et al. Effect of stage 2 kindling on local cerebral blood flow rates in rats with genetic absence epilepsy. Epilepsia 2009; 50 (01) 33-43
  • 45 Carçak N, Zheng T, Ali I. et al. The effect of amygdala kindling on neuronal firing patterns in the lateral thalamus in the GAERS model of absence epilepsy. Epilepsia 2014; 55 (05) 654-665
  • 46 Barker-Haliski M, Friedman D, White HS, French JA. How clinical development can, and should, inform translational science. Neuron 2014; 84 (03) 582-593
  • 47 Paz JT, Chavez M, Saillet S, Deniau JM, Charpier S. Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J Neurosci 2007; 27 (04) 929-941
  • 48 Moeller F, Siebner HR, Wolff S. et al. Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. Neuroimage 2008; 39 (04) 1839-1849