Semin Respir Crit Care Med 2021; 42(02): 183-198
DOI: 10.1055/s-0041-1722898
Review Article

Risk Stratification in Acute Pulmonary Embolism: The Latest Algorithms

Georgios A. Triantafyllou
1   Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Oisin O'Corragain
2   Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania
,
Belinda Rivera-Lebron
1   Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
,
Parth Rali
2   Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University Hospital, Philadelphia, Pennsylvania
› Institutsangaben

Abstract

Pulmonary embolism (PE) is a common clinical entity, which most clinicians will encounter. Appropriate risk stratification of patients is key to identify those who may benefit from reperfusion therapy. The first step in risk assessment should be the identification of hemodynamic instability and, if present, urgent patient consideration for systemic thrombolytics. In the absence of shock, there is a plethora of imaging studies, biochemical markers, and clinical scores that can be used to further assess the patients' short-term mortality risk. Integrated prediction models incorporate more information toward an individualized and precise mortality prediction. Additionally, bleeding risk scores should be utilized prior to initiation of anticoagulation and/or reperfusion therapy administration. Here, we review the latest algorithms for a comprehensive risk stratification of the patient with acute PE.



Publikationsverlauf

Artikel online veröffentlicht:
06. Februar 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Jaff MR, McMurtry MS, Archer SL. et al; American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation, American Heart Association Council on Peripheral Vascular Disease, American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 2011; 123 (16) 1788-1830
  • 2 Konstantinides SV, Meyer G, Becattini C. et al; ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J 2020; 41 (04) 543-603
  • 3 Rivera-Lebron B, McDaniel M, Ahrar K. et al. Diagnosis, treatment and follow up of acute pulmonary embolism: consensus practice from the PERT consortium. Clin Appl Thromb Hemost 2019; 25 DOI: 1076029619853037.
  • 4 Smulders YM. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc Res 2000; 48 (01) 23-33
  • 5 Kearon C, Akl EA, Ornelas J. et al. Antithrombotic therapy for VTE disease: CHEST Guideline and Expert Panel Report. Chest 2016; 149 (02) 315-352
  • 6 Link MS, Berkow LC, Kudenchuk PJ. et al. Part 7: Adult advanced cardiovascular life support: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2015; 132 (18, Suppl 2): S444-S464
  • 7 Rhodes A, Evans LE, Alhazzani W. et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 2017; 45 (03) 486-552
  • 8 Kasper W, Konstantinides S, Geibel A. et al. Management strategies and determinants of outcome in acute major pulmonary embolism: results of a multicenter registry. J Am Coll Cardiol 1997; 30 (05) 1165-1171
  • 9 Laporte S, Mismetti P, Décousus H. et al; RIETE Investigators. Clinical predictors for fatal pulmonary embolism in 15,520 patients with venous thromboembolism: findings from the Registro Informatizado de la Enfermedad TromboEmbolica venosa (RIETE) Registry. Circulation 2008; 117 (13) 1711-1716
  • 10 Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Massive pulmonary embolism. Circulation 2006; 113 (04) 577-582
  • 11 Barco S, Mahmoudpour SH, Valerio L. et al. Trends in mortality related to pulmonary embolism in the European Region, 2000-15: analysis of vital registration data from the WHO Mortality Database. Lancet Respir Med 2020; 8 (03) 277-287
  • 12 Riedel M. Acute pulmonary embolism 1: pathophysiology, clinical presentation, and diagnosis. Heart 2001; 85 (02) 229-240
  • 13 Becattini C, Agnelli G, Lankeit M. et al. Acute pulmonary embolism: mortality prediction by the 2014 European Society of Cardiology risk stratification model. Eur Respir J 2016; 48 (03) 780-786
  • 14 Meyer G, Vicaut E, Danays T. et al; PEITHO Investigators. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med 2014; 370 (15) 1402-1411
  • 15 Konstantinides SV, Torbicki A, Agnelli G. et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 2014; 35: 3033-3069 , 69a–69k
  • 16 Santos AR, Freitas P, Ferreira J. et al. Risk stratification in normotensive acute pulmonary embolism patients: focus on the intermediate-high risk subgroup. Eur Heart J Acute Cardiovasc Care 2020; 9 (04) 279-285
  • 17 Subramaniam RM, Mandrekar J, Chang C. et al. Pulmonary embolism outcome: a prospective evaluation of CT pulmonary angiographic clot burden score and ECG score. AJR Am J Roentgenol 2008; 190 (06) 1599-1604
  • 18 Kline JA, Hernandez-Nino J, Rose GA, Norton HJ, Camargo Jr CA. Surrogate markers for adverse outcomes in normotensive patients with pulmonary embolism. Crit Care Med 2006; 34 (11) 2773-2780
  • 19 Daniel KR, Courtney DM, Kline JA. Assessment of cardiac stress from massive pulmonary embolism with 12-lead ECG. Chest 2001; 120 (02) 474-481
  • 20 Elias A, Mallett S, Daoud-Elias M, Poggi JN, Clarke M. Prognostic models in acute pulmonary embolism: a systematic review and meta-analysis. BMJ Open 2016; 6 (04) e010324
  • 21 Aujesky D, Obrosky DS, Stone RA. et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med 2005; 172 (08) 1041-1046
  • 22 Jiménez D, Aujesky D, Moores L. et al; RIETE Investigators. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med 2010; 170 (15) 1383-1389
  • 23 Donzé J, Le Gal G, Fine MJ. et al. Prospective validation of the pulmonary embolism severity index. A clinical prognostic model for pulmonary embolism. Thromb Haemost 2008; 100 (05) 943-948
  • 24 Righini M, Roy PM, Meyer G, Verschuren F, Aujesky D, Le Gal G. The simplified pulmonary embolism severity index (PESI): validation of a clinical prognostic model for pulmonary embolism. J Thromb Haemost 2011; 9 (10) 2115-2117
  • 25 Zhou XY, Ben SQ, Chen HL, Ni SS. The prognostic value of pulmonary embolism severity index in acute pulmonary embolism: a meta-analysis. Respir Res 2012; 13: 111
  • 26 Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev 2008; 29 (Suppl. 01) S83-S87
  • 27 Aujesky D, Roy PM, Verschuren F. et al. Outpatient versus inpatient treatment for patients with acute pulmonary embolism: an international, open-label, randomised, non-inferiority trial. Lancet 2011; 378 (9785): 41-48
  • 28 Zondag W, Mos IC, Creemers-Schild D. et al; Hestia Study Investigators. Outpatient treatment in patients with acute pulmonary embolism: the Hestia Study. J Thromb Haemost 2011; 9 (08) 1500-1507
  • 29 Aujesky D, Stone RA, Kim S, Crick EJ, Fine MJ. Length of hospital stay and postdischarge mortality in patients with pulmonary embolism: a statewide perspective. Arch Intern Med 2008; 168 (07) 706-712
  • 30 Zondag W, den Exter PL, Crobach MJ. et al; Hestia Study Investigators. Comparison of two methods for selection of out of hospital treatment in patients with acute pulmonary embolism. Thromb Haemost 2013; 109 (01) 47-52
  • 31 den Exter PL, Zondag W, Klok FA. et al; Vesta Study Investigators *. Efficacy and safety of outpatient treatment based on the Hestia clinical decision rule with or without N-terminal pro-brain natriuretic peptide testing in patients with acute pulmonary embolism. A randomized clinical trial. Am J Respir Crit Care Med 2016; 194 (08) 998-1006
  • 32 Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009; 34 (04) 888-894
  • 33 Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008; 117 (13) 1717-1731
  • 34 McIntyre KM, Sasahara AA. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol 1971; 28 (03) 288-294
  • 35 Marcus JT, Gan CT-J, Zwanenburg JJM. et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol 2008; 51 (07) 750-757
  • 36 Henzler T, Roeger S, Meyer M. et al. Pulmonary embolism: CT signs and cardiac biomarkers for predicting right ventricular dysfunction. Eur Respir J 2012; 39 (04) 919-926
  • 37 Ammari Z, Hasnie AA, Ruzieh M. et al. Prognostic value of computed tomography versus echocardiography derived right to left ventricular diameter ratio in acute pulmonary embolism. Am J Med Sci 2020; S0002-9629(20)30301-3
  • 38 Shams A, Hung J, Bahl A. Ability of computed tomography to predict right heart strain on an echocardiogram in patients with acute pulmonary embolus. J Biol Regul Homeost Agents 2018; 32 (02) 365-370
  • 39 İn E, Aydın AM, Özdemir C, Sökücü SN, Dağlı MN. The efficacy of CT for detection of right ventricular dysfunction in acute pulmonary embolism, and comparison with cardiac biomarkers. Jpn J Radiol 2015; 33 (08) 471-478
  • 40 Lu MT, Demehri S, Cai T. et al. Axial and reformatted four-chamber right ventricle-to-left ventricle diameter ratios on pulmonary CT angiography as predictors of death after acute pulmonary embolism. AJR Am J Roentgenol 2012; 198 (06) 1353-1360
  • 41 Meinel FG, Nance Jr JW, Schoepf UJ. et al. Predictive value of computed tomography in acute pulmonary embolism: systematic review and meta-analysis. Am J Med 2015; 128 (07) 747-59.e2
  • 42 González G, Jiménez-Carretero D, Rodríguez-López S. et al. Automated axial right ventricle to left ventricle diameter ratio computation in computed tomography pulmonary angiography. PLoS One 2015; 10 (05) e0127797
  • 43 Ende-Verhaar YM, Kroft LJM, Mos ICM, Huisman MV, Klok FA. Accuracy and reproducibility of CT right-to-left ventricular diameter measurement in patients with acute pulmonary embolism. PLoS One 2017; 12 (11) e0188862
  • 44 Kang DK, Ramos-Duran L, Schoepf UJ. et al. Reproducibility of CT signs of right ventricular dysfunction in acute pulmonary embolism. AJR Am J Roentgenol 2010; 194 (06) 1500-1506
  • 45 Kang DK, Thilo C, Schoepf UJ. et al. CT signs of right ventricular dysfunction: prognostic role in acute pulmonary embolism. JACC Cardiovasc Imaging 2011; 4 (08) 841-849
  • 46 Aviram G, Soikher E, Bendet A. et al. Prediction of mortality in pulmonary embolism based on left atrial volume measured on CT pulmonary angiography. Chest 2016; 149 (03) 667-675
  • 47 van der Meer RW, Pattynama PMT, van Strijen MJL. et al. Right ventricular dysfunction and pulmonary obstruction index at helical CT: prediction of clinical outcome during 3-month follow-up in patients with acute pulmonary embolism. Radiology 2005; 235 (03) 798-803
  • 48 Aviram G, Rogowski O, Gotler Y. et al. Real-time risk stratification of patients with acute pulmonary embolism by grading the reflux of contrast into the inferior vena cava on computerized tomographic pulmonary angiography. J Thromb Haemost 2008; 6 (09) 1488-1493
  • 49 Groves AM, Win T, Charman SC, Wisbey C, Pepke-Zaba J, Coulden RA. Semi-quantitative assessment of tricuspid regurgitation on contrast-enhanced multidetector CT. Clin Radiol 2004; 59 (08) 715-719
  • 50 Bach AG, Nansalmaa B, Kranz J. et al. CT pulmonary angiography findings that predict 30-day mortality in patients with acute pulmonary embolism. Eur J Radiol 2015; 84 (02) 332-337
  • 51 Desjardins B, Kazerooni EA. ECG-gated cardiac CT. AJR Am J Roentgenol 2004; 182 (04) 993-1010
  • 52 Truong QA, Massaro JM, Rogers IS. et al. Reference values for normal pulmonary artery dimensions by noncontrast cardiac computed tomography: the Framingham Heart Study. Circ Cardiovasc Imaging 2012; 5 (01) 147-154
  • 53 Shen Y, Wan C, Tian P. et al. CT-base pulmonary artery measurement in the detection of pulmonary hypertension. Medicine (Baltimore) 2014; 93 (27) e256
  • 54 Tan RT, Kuzo R, Goodman LR, Siegel R, Haasler GB, Presberg KW. Medical College of Wisconsin Lung Transplant Group. Utility of CT scan evaluation for predicting pulmonary hypertension in patients with parenchymal lung disease. Chest 1998; 113 (05) 1250-1256
  • 55 Lyhne MD, Schultz JG, MacMahon PJ. et al. Septal bowing and pulmonary artery diameter on computed tomography pulmonary angiography are associated with short-term outcomes in patients with acute pulmonary embolism. Emerg Radiol 2019; 26 (06) 623-630
  • 56 Jia D, Zhou XM, Hou G. Estimation of right ventricular dysfunction by computed tomography pulmonary angiography: a valuable adjunct for evaluating the severity of acute pulmonary embolism. J Thromb Thrombolysis 2017; 43 (02) 271-278
  • 57 Qanadli SD, El Hajjam M, Vieillard-Baron A. et al. New CT index to quantify arterial obstruction in pulmonary embolism: comparison with angiographic index and echocardiography. AJR Am J Roentgenol 2001; 176 (06) 1415-1420
  • 58 Cok G, Tasbakan MS, Ceylan N, Bayraktaroglu S, Duman S. Can we use CT pulmonary angiography as an alternative to echocardiography in determining right ventricular dysfunction and its severity in patients with acute pulmonary thromboembolism?. Jpn J Radiol 2013; 31 (03) 172-178
  • 59 Mastora I, Remy-Jardin M, Masson P. et al. Severity of acute pulmonary embolism: evaluation of a new spiral CT angiographic score in correlation with echocardiographic data. Eur Radiol 2003; 13 (01) 29-35
  • 60 Miller GAH, Sutton GC, Kerr IH, Gibson RV, Honey M. Comparison of streptokinase and heparin in treatment of isolated acute massive pulmonary embolism. BMJ 1971; 2 (5763): 681-684
  • 61 Bankier AA, Janata K, Fleischmann D. et al. Severity assessment of acute pulmonary embolism with spiral CT: evaluation of two modified angiographic scores and comparison with clinical data. J Thorac Imaging 1997; 12 (02) 150-158
  • 62 Aviram G, Steinvil A, Berliner S. et al. The association between the embolic load and atrial size in acute pulmonary embolism. J Thromb Haemost 2011; 9 (02) 293-299
  • 63 Faghihi Langroudi T, Sheikh M, Naderian M, Sanei Taheri M, Ashraf-Ganjouei A, Khaheshi I. The association between the pulmonary arterial obstruction index and atrial size in patients with acute pulmonary embolism. Radiol Res Pract 2019; 2019: 6025931
  • 64 Wu AS, Pezzullo JA, Cronan JJ, Hou DD, Mayo-Smith WW. CT pulmonary angiography: quantification of pulmonary embolus as a predictor of patient outcome--initial experience. Radiology 2004; 230 (03) 831-835
  • 65 Ghuysen A, Ghaye B, Willems V. et al. Computed tomographic pulmonary angiography and prognostic significance in patients with acute pulmonary embolism. Thorax 2005; 60 (11) 956-961
  • 66 Lerche M, Bailis N, Akritidou M, Meyer HJ, Surov A. Pulmonary vessel obstruction does not correlate with severity of pulmonary embolism. J Clin Med 2019; 8 (05) 8
  • 67 Kucher N, Boekstegers P, Müller OJ. et al. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation 2014; 129 (04) 479-486
  • 68 Piazza G, Hohlfelder B, Jaff MR. et al; SEATTLE II Investigators. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II Study. JACC Cardiovasc Interv 2015; 8 (10) 1382-1392
  • 69 Tapson VF, Sterling K, Jones N. et al. A randomized trial of the optimum duration of acoustic pulse thrombolysis procedure in acute intermediate-risk pulmonary embolism: the OPTALYSE PE Trial. JACC Cardiovasc Interv 2018; 11 (14) 1401-1410
  • 70 Kurnicka K, Lichodziejewska B, Goliszek S. et al. Echocardiographic pattern of acute pulmonary embolism: analysis of 511 consecutive patients. J Am Soc Echocardiogr 2016; 29 (09) 907-913
  • 71 Coutance G, Cauderlier E, Ehtisham J, Hamon M, Hamon M. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis. Crit Care 2011; 15 (02) R103
  • 72 Frémont B, Pacouret G, Jacobi D, Puglisi R, Charbonnier B, de Labriolle A. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest 2008; 133 (02) 358-362
  • 73 Pruszczyk P, Goliszek S, Lichodziejewska B. et al. Prognostic value of echocardiography in normotensive patients with acute pulmonary embolism. JACC Cardiovasc Imaging 2014; 7 (06) 553-560
  • 74 Lobo JL, Holley A, Tapson V. et al; PROTECT and RIETE Investigators. Prognostic significance of tricuspid annular displacement in normotensive patients with acute symptomatic pulmonary embolism. J Thromb Haemost 2014; 12 (07) 1020-1027
  • 75 Kossaify A. Echocardiographic assessment of the right ventricle, from the conventional approach to speckle tracking and three-dimensional imaging, and insights into the “right way” to explore the forgotten chamber. Clin Med Insights Cardiol 2015; 9: 65-75
  • 76 Nazerian P, Vanni S, Volpicelli G. et al. Accuracy of point-of-care multiorgan ultrasonography for the diagnosis of pulmonary embolism. Chest 2014; 145 (05) 950-957
  • 77 Andersen GN, Haugen BO, Graven T, Salvesen O, Mjølstad OC, Dalen H. Feasibility and reliability of point-of-care pocket-sized echocardiography. Eur J Echocardiogr 2011; 12 (09) 665-670
  • 78 Mathis G, Blank W, Reissig A. et al. Thoracic ultrasound for diagnosing pulmonary embolism: a prospective multicenter study of 352 patients. Chest 2005; 128 (03) 1531-1538
  • 79 Le Gal G, Righini M, Sanchez O. et al. A positive compression ultrasonography of the lower limb veins is highly predictive of pulmonary embolism on computed tomography in suspected patients. Thromb Haemost 2006; 95 (06) 963-966
  • 80 Kucher N, Goldhaber SZ. Cardiac biomarkers for risk stratification of patients with acute pulmonary embolism. Circulation 2003; 108 (18) 2191-2194
  • 81 Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J 2011; 32 (04) 404-411
  • 82 Bajaj A, Saleeb M, Rathor P, Sehgal V, Kabak B, Hosur S. Prognostic value of troponins in acute nonmassive pulmonary embolism: a meta-analysis. Heart Lung 2015; 44 (04) 327-334
  • 83 Kaeberich A, Seeber V, Jiménez D. et al. Age-adjusted high-sensitivity troponin T cut-off value for risk stratification of pulmonary embolism. Eur Respir J 2015; 45 (05) 1323-1331
  • 84 Alhadi HA, Fox KA. Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. QJM 2004; 97 (04) 187-198
  • 85 Bajaj A, Rathor P, Sehgal V, Shetty A, Kabak B, Hosur S. Risk stratification in acute pulmonary embolism with heart-type fatty acid–binding protein: a meta-analysis. J Crit Care 2015; 30: 1151.e1-1151.e7
  • 86 Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998; 339 (05) 321-328
  • 87 Klok FA, Mos ICM, Huisman MV. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am J Respir Crit Care Med 2008; 178 (04) 425-430
  • 88 Agterof MJ, Schutgens REG, Snijder RJ. et al. Out of hospital treatment of acute pulmonary embolism in patients with a low NT-proBNP level. J Thromb Haemost 2010; 8 (06) 1235-1241
  • 89 Lankeit M, Jiménez D, Kostrubiec M. et al. Validation of N-terminal pro-brain natriuretic peptide cut-off values for risk stratification of pulmonary embolism. Eur Respir J 2014; 43 (06) 1669-1677
  • 90 Vanni S, Viviani G, Baioni M. et al. Prognostic value of plasma lactate levels among patients with acute pulmonary embolism: the thrombo-embolism lactate outcome study. Ann Emerg Med 2013; 61 (03) 330-338
  • 91 Vanni S, Nazerian P, Bova C. et al. Comparison of clinical scores for identification of patients with pulmonary embolism at intermediate-high risk of adverse clinical outcome: the prognostic role of plasma lactate. Intern Emerg Med 2017; 12 (05) 657-665
  • 92 Zhou X-Y, Chen H-L, Ni S-S. Hyponatremia and short-term prognosis of patients with acute pulmonary embolism: a meta-analysis. Int J Cardiol 2017; 227: 251-256
  • 93 Kostrubiec M, Łabyk A, Pedowska-Włoszek J. et al. Assessment of renal dysfunction improves troponin-based short-term prognosis in patients with acute symptomatic pulmonary embolism. J Thromb Haemost 2010; 8 (04) 651-658
  • 94 Kostrubiec M, Łabyk A, Pedowska-Włoszek J. et al. Rapid improvement of renal function in patients with acute pulmonary embolism indicates favorable short term prognosis. Thromb Res 2012; 130 (03) e37-e42
  • 95 Kostrubiec M, Pływaczewska M, Jiménez D. et al. The prognostic value of renal function in acute pulmonary embolism-a multi-centre cohort study. Thromb Haemost 2019; 119 (01) 140-148
  • 96 Kostrubiec M, Łabyk A, Pedowska-Włoszek J. et al. Neutrophil gelatinase-associated lipocalin, cystatin C and eGFR indicate acute kidney injury and predict prognosis of patients with acute pulmonary embolism. Heart 2012; 98 (16) 1221-1228
  • 97 Hellenkamp K, Schwung J, Rossmann H. et al. Risk stratification of normotensive pulmonary embolism: prognostic impact of copeptin. Eur Respir J 2015; 46 (06) 1701-1710
  • 98 Barrios D, Rosa-Salazar V, Morillo R. et al. Prognostic significance of right heart thrombi in patients with acute symptomatic pulmonary embolism: systematic review and meta-analysis. Chest 2017; 151 (02) 409-416
  • 99 Becattini C, Cohen AT, Agnelli G. et al. Risk stratification of patients with acute symptomatic pulmonary embolism based on presence or absence of lower extremity DVT: systematic review and meta-analysis. Chest 2016; 149 (01) 192-200
  • 100 Rodriguez-Lopez J, Channick R. The pulmonary embolism response team: What is the ideal model?. Semin Respir Crit Care Med 2017; 38 (01) 51-55
  • 101 Torbicki A, Galié N, Covezzoli A, Rossi E, De Rosa M, Goldhaber SZ. ICOPER Study Group. Right heart thrombi in pulmonary embolism: results from the International Cooperative Pulmonary Embolism Registry. J Am Coll Cardiol 2003; 41 (12) 2245-2251
  • 102 Garvey S, Dudzinski DM, Giordano N, Torrey J, Zheng H, Kabrhel C. Pulmonary embolism with clot in transit: an analysis of risk factors and outcomes. Thromb Res 2020; 187: 139-147
  • 103 Kukla P, McIntyre WF, Koracevic G. et al. Relation of atrial fibrillation and right-sided cardiac thrombus to outcomes in patients with acute pulmonary embolism. Am J Cardiol 2015; 115 (06) 825-830
  • 104 Koć M, Kostrubiec M, Elikowski W. et al; RiHTER Investigators. Outcome of patients with right heart thrombi: the Right Heart Thrombi European Registry. Eur Respir J 2016; 47 (03) 869-875
  • 105 Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc 1984; 59 (01) 17-20
  • 106 Konstantinides S, Geibel A, Kasper W, Olschewski M, Blümel L, Just H. Patent foramen ovale is an important predictor of adverse outcome in patients with major pulmonary embolism. Circulation 1998; 97 (19) 1946-1951
  • 107 Doyen D, Castellani M, Moceri P. et al. Patent foramen ovale and stroke in intermediate-risk pulmonary embolism. Chest 2014; 146 (04) 967-973
  • 108 Goliszek S, Wiśniewska M, Kurnicka K. et al. Patent foramen ovale increases the risk of acute ischemic stroke in patients with acute pulmonary embolism leading to right ventricular dysfunction. Thromb Res 2014; 134 (05) 1052-1056
  • 109 Clergeau MR, Hamon M, Morello R, Saloux E, Viader F, Hamon M. Silent cerebral infarcts in patients with pulmonary embolism and a patent foramen ovale: a prospective diffusion-weighted MRI study. Stroke 2009; 40 (12) 3758-3762
  • 110 Chatterjee S, Weinberg I, Yeh RW. et al. Risk factors for intracranial haemorrhage in patients with pulmonary embolism treated with thrombolytic therapy Development of the PE-CH Score. Thromb Haemost 2017; 117 (02) 246-251
  • 111 Jara-Palomares L, Jiménez D, Bikdeli B. et al; RIETE Investigators. Derivation and validation of a clinical prediction rule for thrombolysis-associated major bleeding in patients with acute pulmonary embolism: the BACS score. Eur Respir J 2020; 2002336
  • 112 Landefeld CS, Goldman L. Major bleeding in outpatients treated with warfarin: incidence and prediction by factors known at the start of outpatient therapy. Am J Med 1989; 87 (02) 144-152
  • 113 Beyth RJ, Quinn LM, Landefeld CS. Prospective evaluation of an index for predicting the risk of major bleeding in outpatients treated with warfarin. Am J Med 1998; 105 (02) 91-99
  • 114 Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJGM, Lip GYH. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 2010; 138 (05) 1093-1100
  • 115 Kooiman J, van Hagen N, Iglesias Del Sol A. et al. The HAS-BLED score identifies patients with acute venous thromboembolism at high risk of major bleeding complications during the first six months of anticoagulant treatment. PLoS One 2015; 10 (04) e0122520
  • 116 Brown JD, Goodin AJ, Lip GYH, Adams VR. Risk stratification for bleeding complications in patients with venous thromboembolism: application of the HAS-BLED bleeding score during the first 6 months of anticoagulant treatment. J Am Heart Assoc 2018; 7 (06) 7
  • 117 Ruíz-Giménez N, Suárez C, González R. et al; RIETE Investigators. Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Findings from the RIETE Registry. Thromb Haemost 2008; 100 (01) 26-31
  • 118 Schulman S, Kearon C, Kakkar AK. et al; RE-COVER Study Group. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N Engl J Med 2009; 361 (24) 2342-2352
  • 119 Klok FA, Hösel V, Clemens A. et al. Prediction of bleeding events in patients with venous thromboembolism on stable anticoagulation treatment. Eur Respir J 2016; 48 (05) 1369-1376
  • 120 Büller HR, Décousus H, Grosso MA. et al; Hokusai-VTE Investigators. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N Engl J Med 2013; 369: 1406-1415
  • 121 Klok FA, Barco S, Konstantinides SV. External validation of the VTE-BLEED score for predicting major bleeding in stable anticoagulated patients with venous thromboembolism. Thromb Haemost 2017; 117 (06) 1164-1170
  • 122 Jiménez D, Kopecna D, Tapson V. et al; On Behalf Of The Protect Investigators. Derivation and validation of multimarker prognostication for normotensive patients with acute symptomatic pulmonary embolism. Am J Respir Crit Care Med 2014; 189 (06) 718-726
  • 123 Dunn A. A 4-marker model predicted a complicated course in normotensive patients with acute symptomatic PE. Ann Intern Med 2014; 161 (08) JC13
  • 124 Bova C, Sanchez O, Prandoni P. et al. Identification of intermediate-risk patients with acute symptomatic pulmonary embolism. Eur Respir J 2014; 44 (03) 694-703
  • 125 Fernández C, Bova C, Sanchez O. et al. Validation of a model for identification of patients at intermediate to high risk for complications associated with acute symptomatic pulmonary embolism. Chest 2015; 148 (01) 211-218
  • 126 Bova C, Vanni S, Prandoni P. et al; Bova Score Validation Study Investigators. A prospective validation of the Bova score in normotensive patients with acute pulmonary embolism. Thromb Res 2018; 165: 107-111
  • 127 Lankeit M, Friesen D, Schäfer K, Hasenfuß G, Konstantinides S, Dellas C. A simple score for rapid risk assessment of non-high-risk pulmonary embolism. Clin Res Cardiol 2013; 102 (01) 73-80
  • 128 Dellas C, Tschepe M, Seeber V. et al. A novel H-FABP assay and a fast prognostic score for risk assessment of normotensive pulmonary embolism. Thromb Haemost 2014; 111 (05) 996-1003
  • 129 Hobohm L, Hellenkamp K, Hasenfuß G, Münzel T, Konstantinides S, Lankeit M. Comparison of risk assessment strategies for not-high-risk pulmonary embolism. Eur Respir J 2016; 47 (04) 1170-1178
  • 130 Kohn CG, Mearns ES, Parker MW, Hernandez AV, Coleman CI. Prognostic accuracy of clinical prediction rules for early post-pulmonary embolism all-cause mortality: a bivariate meta-analysis. Chest 2015; 147 (04) 1043-1062
  • 131 Hobohm L, Becattini C, Konstantinides SV, Casazza F, Lankeit M. Validation of a fast prognostic score for risk stratification of normotensive patients with acute pulmonary embolism. Clin Res Cardiol 2020; 109 (08) 1008-1017
  • 132 Hendriks SV, Lankeit M, den Exter PL. et al. Uncertain value of high-sensitive troponin T for selecting patients with acute pulmonary embolism for outpatient treatment by Hestia criteria. Acad Emerg Med 2020; 27 (10) 1043-1046
  • 133 Hendriks SV, Klok FA, den Exter PL. et al. Right ventricle-to-left ventricle diameter ratio measurement seems to have no role in low-risk patients with pulmonary embolism treated at home triaged by Hestia criteria. Am J Respir Crit Care Med 2020; 202 (01) 138-141
  • 134 Zondag W, Vingerhoets LM, Durian MF. et al; Hestia Study Investigators. Hestia criteria can safely select patients with pulmonary embolism for outpatient treatment irrespective of right ventricular function. J Thromb Haemost 2013; 11 (04) 686-692