Journal of Pediatric Neurology 2023; 21(03): 155-167
DOI: 10.1055/s-0041-1727260
Review Article

SCN1A and Its Related Epileptic Phenotypes

Federica Sullo
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Elisa Pasquetti
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Francesca Patanè
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Manuela Lo Bianco
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Simona D. Marino
2   Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
,
Agata Polizzi
3   Chair of Pediatrics, Department of Educational Sciences, University of Catania, Catania, Italy
,
Raffaele Falsaperla
2   Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
4   Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
,
Martino Ruggieri
1   Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
,
Antonio Zanghì
5   Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
,
Andrea D. Praticò
6   Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
› Institutsangaben

Abstract

Epilepsy is one of the most common neurological disorders, with a lifetime incidence of 1 in 26. Approximately two-thirds of epilepsy has a substantial genetic component in its etiology. As a result, simultaneous screening for mutations in multiple genes and performing whole exome sequencing (WES) are becoming very frequent in the clinical evaluation of children with epilepsy. In this setting, mutations in voltage-gated sodium channel (SCN) α-subunit genes are the most commonly identified cause of epilepsy, with sodium channel genes (i.e., SCN1A, SCN2A, SCN8A) being the most frequently identified causative genes. SCN1A mutations result in a wide spectrum of epilepsy phenotypes ranging from simple febrile seizures to Dravet syndrome, a severe epileptic encephalopathy. In case of mutation of SCN1A, it is also possible to observe behavioral alterations, such as impulsivity, inattentiveness, and distractibility, which can be framed in an attention deficit hyperactivity disorder (ADHD) like phenotype. Despite more than 1,200 SCN1A mutations being reported, it is not possible to assess a clear phenotype–genotype correlations. Treatment remains a challenge and seizure control is often partial and transitory.



Publikationsverlauf

Eingereicht: 06. September 2020

Angenommen: 22. Februar 2021

Artikel online veröffentlicht:
13. April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000; 26 (01) 13-25
  • 2 Whitaker WR, Clare JJ, Powell AJ, Chen YH, Faull RL, Emson PC. Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol 2000; 422 (01) 123-139
  • 3 Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ. Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res 2001; 88 (1–2): 37-53
  • 4 Abo El Fotoh WM, Abd El Naby SA, Habib MS, ALrefai AA, Kasemy ZA. The potential implication of SCN1A and CYP3A5 genetic variants on antiepileptic drug resistance among Egyptian epileptic children. Seizure 2016; 41: 75-80
  • 5 Chen YJ, Shi YW, Xu HQ. et al. Electrophysiological differences between the same pore region mutation in SCN1A and SCN3A. Mol Neurobiol 2015; 51 (03) 1263-1270
  • 6 Gong B, Rhodes KJ, Bekele-Arcuri Z, Trimmer JS. Type I and type II Na(+) channel alpha-subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain. J Comp Neurol 1999; 412 (02) 342-352
  • 7 Beckh S, Noda M, Lübbert H, Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 1989; 8 (12) 3611-3616
  • 8 Zeng T, Dong ZF, Liu SJ. et al. A novel variant in the 3′ UTR of human SCN1A gene from a patient with Dravet syndrome decreases mRNA stability mediated by GAPDH's binding. Hum Genet 2014; 133 (06) 801-811
  • 9 Liao WP, Shi YW, Long YS. et al. Partial epilepsy with antecedent febrile seizures and seizure aggravation by antiepileptic drugs: associated with loss of function of Na(v) 1.1. Epilepsia 2010; 51 (09) 1669-1678
  • 10 Abou-Khalil B, Ge Q, Desai R. et al. Partial and generalized epilepsy with febrile seizures plus and a novel SCN1A mutation. Neurology 2001; 57 (12) 2265-2272
  • 11 Meng H, Xu HQ, Yu L. et al. The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat 2015; 36 (06) 573-580
  • 12 Bonanni P, Malcarne M, Moro F. et al. Generalized epilepsy with febrile seizures plus (GEFS+): clinical spectrum in seven Italian families unrelated to SCN1A, SCN1B, and GABRG2 gene mutations. Epilepsia 2004; 45 (02) 149-158
  • 13 Freilich ER, Jones JM, Gaillard WD. et al. Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy. Arch Neurol 2011; 68 (05) 665-671
  • 14 Arzimanoglou A, Guerrini R, Aicardi J. Aicardi's Epilepsy in Children. 3rd ed.. Philadelphia, PA: Lippincott Williams & Wilkins; 2004
  • 15 Ebach K, Joos H, Doose H. et al. SCN1A mutation analysis in myoclonic astatic epilepsy and severe idiopathic generalized epilepsy of infancy with generalized tonic-clonic seizures. Neuropediatrics 2005; 36 (03) 210-213
  • 16 Selmer KK, Lund C, Brandal K, Undlien DE, Brodtkorb E. SCN1A mutation screening in adult patients with Lennox-Gastaut syndrome features. Epilepsy Behav 2009; 16 (03) 555-557
  • 17 Wallace RH, Hodgson BL, Grinton BE. et al. Sodium channel alpha1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology 2003; 61 (06) 765-769
  • 18 Pavone P, Falsaperla R, Ruggieri M, Praticò AD, Pavone L. West syndrome treatment: new roads for an old syndrome. Front Neurol 2013; 4: 113
  • 19 Ruggieri M, Iannetti P, Clementi M. et al. Neurofibromatosis type 1 and infantile spasms. Childs Nerv Syst 2009; 25 (02) 211-216
  • 20 Berkovic SF, Harkin L, McMahon JM. et al. De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: a retrospective study. Lancet Neurol 2006; 5 (06) 488-492
  • 21 Tro-Baumann B, von Spiczak S, Lotte J. et al. A retrospective study of the relation between vaccination and occurrence of seizures in Dravet syndrome. Epilepsia 2011; 52 (01) 175-178
  • 22 Fujiwara T, Sugawara T, Mazaki-Miyazaki E. et al. Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain 2003; 126 (Pt 3): 531-546
  • 23 Brunklaus A, Schorge S, Smith AD. et al. SCN1A variants from bench to bedside-improved clinical prediction from functional characterization. Hum Mutat 2020; 41 (02) 363-374
  • 24 Mantegazza M, Gambardella A, Rusconi R. et al. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci U S A 2005; 102 (50) 18177-18182
  • 25 Ruggieri M, Rizzo R, Pavone P, Baieli S, Sorge G, Happle R. Temporal triangular alopecia in association with mental retardation and epilepsy in a mother and daughter. Arch Dermatol 2000; 136 (03) 426-427
  • 26 Kasperaviciute D, Catarino CB, Matarin M. et al; UK Brain Expression Consortium. Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain 2013; 136 (Pt 10): 3140-3150
  • 27 Guo Y, Baum LW, Sham PC. et al. Two-stage genome-wide association study identifies variants in CAMSAP1L1 as susceptibility loci for epilepsy in Chinese. Hum Mol Genet 2012; 21 (05) 1184-1189
  • 28 Lee YJ, Yum MS, Kim MJ. et al. Large-scale structural alteration of brain in epileptic children with SCN1A mutation. Neuroimage Clin 2017; 15: 594-600
  • 29 Pavone P, Praticò AD, Vitaliti G. et al. Hydranencephaly: cerebral spinal fluid instead of cerebral mantles. Ital J Pediatr 2014; 40: 79
  • 30 Striano P, Mancardi MM, Biancheri R. et al. Brain MRI findings in severe myoclonic epilepsy in infancy and genotype-phenotype correlations. Epilepsia 2007; 48 (06) 1092-1096
  • 31 Guerrini R, Striano P, Catarino C, Sisodiya SM. Neuroimaging and neuropathology of Dravet syndrome. Epilepsia 2011; 52 (Suppl. 02) 30-34
  • 32 Kumar A, Juhász C, Luat A. et al. Evolution of brain glucose metabolic abnormalities in children with epilepsy and SCN1A gene variants. J Child Neurol 2018; 33 (13) 832-836
  • 33 Dibué-Adjei M, Fischer I, Steiger HJ, Kamp MA. Efficacy of adjunctive vagus nerve stimulation in patients with Dravet syndrome: a meta-analysis of 68 patients. Seizure 2017; 50: 147-152
  • 34 Salpietro V, Mankad K, Kinali M. et al. Pediatric idiopathic intracranial hypertension and the underlying endocrine-metabolic dysfunction: a pilot study. J Pediatr Endocrinol Metab 2014; 27 (1–2): 107-115
  • 35 Dravet C. Les epilepsies graves de l'enfant. Vie Med 1978; 8: 543-548
  • 36 Praticò AD, Falsaperla R, Ruggieri M, Corsello G, Pavone P. Prognostic challenges of SCN1A genetic mutations: report on two children with mild features. J Pediatr Neurol 2016; 14: 82-88
  • 37 Dravet C. The core Dravet syndrome phenotype. Epilepsia 2011; 52 (Suppl. 02) 3-9
  • 38 Ogino T, Ohtsuka Y, Yamatogi Y, Ohtahara S. Severe myoclonic epilepsy in infancy: clinico electroencephalographic and long-term follow-up studies. Brain Dev 1986; 8: 162
  • 39 Ogino T, Ohtsuka Y, Yamatogi Y, Oka E, Ohtahara S. The epileptic syndrome sharing common characteristics during early childhood with severe myoclonic epilepsy in infancy. Jpn J Psychiatry Neurol 1989; 43 (03) 479-481
  • 40 Kanazawa O. Medically intractable generalized tonic-clonic or clonic seizures in infancy. J Epilepsy 1992; 5 (03) 143-148
  • 41 Yakoub M, Dulac O, Jambaqué I, Chiron C, Plouin P. Early diagnosis of severe myoclonic epilepsy in infancy. Brain Dev 1992; 14 (05) 299-303
  • 42 Wu YW, Sullivan J, McDaniel SS. et al. Incidence of Dravet syndrome in a US population. Pediatrics 2015; 136 (05) e1310-e1315
  • 43 Ruggieri M, Pavone V, De Luca D, Franzò A, Tiné A, Pavone L. Congenital bone malformations in patients with neurofibromatosis type 1 (NF1). J Pediatr Orthop 1999; 19 (03) 301-305
  • 44 Ruggieri M, Milone P, Pavone P. et al. Nevus vascularis mixtus (cutaneous vascular twin nevi) associated with intracranial vascular malformation of the Dyke-Davidoff-Masson type in two patients. Am J Med Genet A 2012; 158A (11) 2870-2880
  • 45 Ruggieri M, Praticò AD, Serra A. et al. Childhood neurofibromatosis type 2 (NF2) and related disorders: from bench to bedside and biologically targeted therapies. Acta Otorhinolaryngol Ital 2016; 36 (05) 345-367
  • 46 Praticò AD, Polizzi A, Salafia R. et al. Megalencephaly capillary malformation syndrome. J Pediatr Neurol 2018; 16: 328-337
  • 47 Dravet C, Bureau M, Guerrini R, Giraud N, Roger J. Severe myoclonic epilepsy in infancy. In: Roger J, Bureau M, Dravet CH, Dreifuss FE, Perret A, Wolf P. eds. Epileptic Syndromes in Infancy, Childhood and Adolescence. 2nd ed.. London: John Libbey & Company Ltd; 1992: 75-88
  • 48 Dalla Bernardina B, Capovilla G, Gattoni M. Epilepsie myoclonique grave de la première année. Rev EEG Neurophysiol 1982; 12 (01) 21-25
  • 49 Brunklaus A, Ellis R, Reavey E, Forbes GH, Zuberi SM. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain 2012; 135 (Pt 8): 2329-2336
  • 50 Falsaperla R, Perciavalle V, Pavone P. et al. Unilateral eye blinking arising from the ictal ipsilateral occipital area. Clin EEG Neurosci 2016; 47 (03) 243-246
  • 51 Incorpora G, Pavone P, Castellano-Chiodo D, Praticò AD, Ruggieri M, Pavone L. Gelastic seizures due to hypothalamic hamartoma: rapid resolution after endoscopic tumor disconnection. Neurocase 2013; 19 (05) 458-461
  • 52 Fukuma G, Oguni H, Shirasaka Y. et al. Mutations of neuronal voltage-gated Na+ channel alpha 1 subunit gene SCN1A in core severe myoclonic epilepsy in infancy (SMEI) and in borderline SMEI (SMEB). Epilepsia 2004; 45 (02) 140-148
  • 53 Mulley JC, Nelson P, Guerrero S. et al. A new molecular mechanism for severe myoclonic epilepsy of infancy: exonic deletions in SCN1A. Neurology 2006; 67 (06) 1094-1095
  • 54 Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O. Severe myoclonic epilepsy in infancy (Dravet syndrome). In: Roger J, Bureau M, Dravet C, Genton P, Tassinari CA, Wolf P. eds. Epileptic syndromes in Infancy, Childhood and adolescence. London: John Libbey & Co Ltd; 2002: 81-103
  • 55 Damiano JA, Deng L, Li W. et al. SCN1A Variants in vaccine-related febrile seizures: a prospective study. Ann Neurol 2020; 87 (02) 281-288
  • 56 Wirrell EC, Laux L, Donner E. et al. Optimizing the diagnosis and management of Dravet syndrome: recommendations from a North American Consensus Panel. Pediatr Neurol 2017; 68: 18-34.e3
  • 57 Lagae L, Brambilla I, Mingorance A, Gibson E, Battersby A. Quality of life and comorbidities associated with Dravet syndrome severity: a multinational cohort survey. Dev Med Child Neurol 2018; 60 (01) 63-72
  • 58 Pavone P, Praticò AD, Ruggieri M. et al. Acquired peripheral neuropathy: a report on 20 children. Int J Immunopathol Pharmacol 2012; 25 (02) 513-517
  • 59 Xu X, Yang X, Wu Q. et al. Amplicon resequencing identified parental mosaicism for approximately 10% of “de novo” SCN1A mutations in children with Dravet syndrome. Hum Mutat 2015; 36 (09) 861-872
  • 60 Akiyama M, Kobayashi K, Yoshinaga H, Ohtsuka Y. A long-term follow-up study of Dravet syndrome up to adulthood. Epilepsia 2010; 51 (06) 1043-1052
  • 61 Dutton SBB, Dutt K, Papale LA, Helmers S, Goldin AL, Escayg A. Early-life febrile seizures worsen adult phenotypes in SCN1A mutants. Exp Neurol 2017; 293: 159-171
  • 62 Lionetti E, Leonardi S, Franzonello C, Mancardi M, Ruggieri M, Catassi C. Gluten psychosis: confirmation of a new clinical entity. Nutrients 2015; 7 (07) 5532-5539
  • 63 Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizures plus. A genetic disorder with heterogeneous clinical phenotypes. Brain 1997; 120 (Pt 3): 479-490
  • 64 Ito M, Nagafuji H, Okazawa H. et al. Autosomal dominant epilepsy with febrile seizures plus with missense mutations of the (Na+)-channel alpha 1 subunit gene, SCN1A. Epilepsy Res 2002; 48 (1–2): 15-23
  • 65 Hoffman-Zacharska D, Szczepanik E, Terczynska I. et al. From focal epilepsy to Dravet syndrome: heterogeneity of the phenotype due to SCN1A mutations of the p.Arg1596 amino acid residue in the Nav1.1 subunit. Neurol Neurochir Pol 2015; 49 (04) 258-266
  • 66 Koutroumanidis M, Ferrie CD, Valeta T, Sanders S, Michael M, Panayiotopoulos CP. Syncope-like epileptic seizures in Panayiotopoulos syndrome. Neurology 2012; 79 (05) 463-467
  • 67 Grosso S, Orrico A, Galli L, Di Bartolo R, Sorrentino V, Balestri P. SCN1A mutation associated with atypical Panayiotopoulos syndrome. Neurology 2007; 69 (06) 609-611
  • 68 Livingston JH, Cross JH, Mclellan A, Birch R, Zuberi SM. A novel inherited mutation in the voltage sensor region of SCN1A is associated with Panayiotopoulos syndrome in siblings and generalized epilepsy with febrile seizures plus. J Child Neurol 2009; 24 (04) 503-508
  • 69 Kivity S, Oliver KL, Afawi Z. et al. SCN1A clinical spectrum includes the self-limited focal epilepsies of childhood. Epilepsy Res 2017; 131: 9-14
  • 70 Zhang YH, Burgess R, Malone JP. et al. Genetic epilepsy with febrile seizures plus: refining the spectrum. Neurology 2017; 89 (12) 1210-1219
  • 71 Consensus Development Panel. Consensus statement. Febrile seizures: long-term management of children with fever-associated seizures. Pediatrics 1980; 66 (06) 1009-1012
  • 72 Till Á, Zima J, Fekete A. et al. Mutation spectrum of the SCN1A gene in a Hungarian population with epilepsy. Seizure 2020; 74: 8-13
  • 73 Hamdy NA, Ginby D, Feltbower R, Ferrie CD. Ethnic differences in the incidence of seizure disorders in children from Bradford, United Kingdom. Epilepsia 2007; 48 (05) 913-916
  • 74 Nelson KB, Ellenberg JH. Prenatal and perinatal antecedents of febrile seizures. Ann Neurol 1990; 27 (02) 127-131
  • 75 Eckhaus J, Lawrence KM, Helbig I. et al. Genetics of febrile seizure subtypes and syndromes: a twin study. Epilepsy Res 2013; 105 (1–2): 103-109
  • 76 Singh R, Scheffer IE, Crossland K, Berkovic SF. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann Neurol 1999; 45 (01) 75-81
  • 77 Baulac S, Gourfinkel-An I, Picard F. et al. A second locus for familial generalized epilepsy with febrile seizures plus maps to chromosome 2q21-q33. Am J Hum Genet 1999; 65 (04) 1078-1085
  • 78 Wallace RH, Wang DW, Singh R. et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet 1998; 19 (04) 366-370
  • 79 Brunklaus A, Ellis R, Stewart H. et al. Homozygous mutations in the SCN1A gene associated with genetic epilepsy with febrile seizures plus and Dravet syndrome in 2 families. Eur J Paediatr Neurol 2015; 19 (04) 484-488
  • 80 Myers KA, Burgess R, Afawi Z. et al. De novo SCN1A pathogenic variants in the GEFS+ spectrum: not always a familial syndrome. Epilepsia 2017; 58 (02) e26-e30
  • 81 Sijben AE, Sithinamsuwan P, Radhakrishnan A. et al. Does a SCN1A gene mutation confer earlier age of onset of febrile seizures in GEFS+?. Epilepsia 2009; 50 (04) 953-956
  • 82 Miller IO, Sotero de Menezes MA. SCN1A Seizure Disorders. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A. eds. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993-2020
  • 83 Hawkins NA, Martin MS, Frankel WN, Kearney JA, Escayg A. Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. Neurobiol Dis 2011; 41 (03) 655-660
  • 84 Singh NA, Pappas C, Dahle EJ. et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet 2009; 5 (09) e1000649
  • 85 Jiang T, Shen Y, Chen H, Yuan Z, Mao S, Gao F. Clinical and molecular analysis of epilepsy-related genes in patients with Dravet syndrome. Medicine (Baltimore) 2018; 97 (50) e13565
  • 86 Sorge G, Ruggieri M, Polizzi A, Scuderi A, Di Pietro M. SHORT syndrome: a new case with probable autosomal dominant inheritance. Am J Med Genet 1996; 61 (02) 178-181
  • 87 Rodda JM, Scheffer IE, McMahon JM, Berkovic SF, Graham HK. Progressive gait deterioration in adolescents with Dravet syndrome. Arch Neurol 2012; 69 (07) 873-878
  • 88 Rilstone JJ, Coelho FM, Minassian BA, Andrade DM. Dravet syndrome: seizure control and gait in adults with different SCN1A mutations. Epilepsia 2012; 53 (08) 1421-1428
  • 89 Cassé-Perrot C, Wolff M, Dravet C. Neuropsychological aspects of severe myoclonic epilepsy in infancy. In: Jambaqué I, Lassonde M, Dulac O. eds. The Neuropsychology of Childhood Epilepsy. Berlin: Springer; 2001: 131-140
  • 90 Wolff M, Cassé-Perrot C, Dravet C. Neuropsychological disorders in children with severe myoclonic epilepsy. Epilepsia 2006; 47: 61
  • 91 Ruggieri M, Iannetti P, Pavone L. Delineation of a newly recognized neurocutaneous malformation syndrome with “cutis tricolor.”. Am J Med Genet A 2003; 120A (01) 110-116
  • 92 Buoni S, Orrico A, Galli L. et al. SCN1A (2528delG) novel truncating mutation with benign outcome of severe myoclonic epilepsy of infancy. Neurology 2006; 66 (04) 606-607
  • 93 Ragona F, Granata T, Dalla Bernardina B. et al. Cognitive development in Dravet syndrome: a retrospective, multicenter study of 26 patients. Epilepsia 2011; 52 (02) 386-392
  • 94 Gataullina S, Dulac O. From genotype to phenotype in Dravet disease. Seizure 2017; 44: 58-64
  • 95 Villas N, Meskis MA, Goodliffe S. Dravet syndrome: characteristics, comorbidities, and caregiver concerns. Epilepsy Behav 2017; 74: 81-86
  • 96 Nashef L, So EL, Ryvlin P, Tomson T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 2012; 53 (02) 227-233
  • 97 Sveinsson O, Andersson T, Carlsson S, Tomson T. The incidence of SUDEP: a nationwide population-based cohort study. Neurology 2017; 89 (02) 170-177
  • 98 Thurman DJ, Hesdorffer DC, French JA. Sudden unexpected death in epilepsy: assessing the public health burden. Epilepsia 2014; 55 (10) 1479-1485
  • 99 Cooper MS, Mcintosh A, Crompton DE. et al. Mortality in Dravet syndrome. Epilepsy Res 2016; 128: 43-47
  • 100 Surges R, Thijs RD, Tan HL, Sander JW. Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurol 2009; 5 (09) 492-504
  • 101 Mishra S, Reznikov V, Maltsev VA, Undrovinas NA, Sabbah HN, Undrovinas A. Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts. J Physiol 2015; 593 (06) 1409-1427
  • 102 Frasier CR, Zhang H, Offord J. et al. Channelopathy as a SUDEP biomarker in Dravet syndrome patient-derived cardiac myocytes. Stem Cell Reports 2018; 11 (03) 626-634
  • 103 Brownstein CA, Goldstein RD, Thompson CH. et al. SCN1A variants associated with sudden infant death syndrome. Epilepsia 2018; 59 (04) e56-e62
  • 104 Myers KA, Shevell MI, Sébire G. Sudden unexpected death in GEFS+ families with sodium channel pathogenic variants. Epilepsy Res 2019; 150: 66-69
  • 105 Zuberi SM, Brunklaus A, Birch R, Reavey E, Duncan J, Forbes GH. Genotype-phenotype associations in SCN1A-related epilepsies. Neurology 2011; 76 (07) 594-600
  • 106 Xu XJ, Zhang YH, Sun HH, Liu XY, Jiang YW, Wu XR. Genetic and phenotypic characteristics of SCN1A mutations in Dravet syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2012; 29 (06) 625-630
  • 107 Usluer S, Salar S, Arslan M. et al. SCN1A gene sequencing in 46 Turkish epilepsy patients disclosed 12 novel mutations. Seizure 2016; 39: 34-43
  • 108 Djémié T, Weckhuysen S, von Spiczak S. et al; EuroEPINOMICS, -RES Dravet working group. Pitfalls in genetic testing: the story of missed SCN1A mutations. Mol Genet Genomic Med 2016; 4 (04) 457-464
  • 109 Goldberg-Stern H, Aharoni S, Afawi Z. et al. Broad phenotypic heterogeneity due to a novel SCN1A mutation in a family with genetic epilepsy with febrile seizures plus. J Child Neurol 2014; 29 (02) 221-226
  • 110 Depienne C, Trouillard O, Gourfinkel-An I. et al. Mechanisms for variable expressivity of inherited SCN1A mutations causing Dravet syndrome. J Med Genet 2010; 47 (06) 404-410
  • 111 Sawyer NT, Helvig AW, Makinson CD, Decker MJ, Neigh GN, Escayg A. Scn1a dysfunction alters behavior but not the effect of stress on seizure response. Genes Brain Behav 2016; 15 (03) 335-347
  • 112 Musto E, Gardella E, Møller RS. Recent advances in treatment of epilepsy-related sodium channelopathies. Eur J Paediatr Neurol 2020; 24: 123-128
  • 113 Brunklaus A, Lal D. Sodium channel epilepsies and neurodevelopmental disorders: from disease mechanisms to clinical application. Dev Med Child Neurol 2020; 62 (07) 784-792
  • 114 Sadleir LG, Mountier EI, Gill D. et al; DDD Study. Not all SCN1A epileptic encephalopathies are Dravet syndrome: early profound Thr226Met phenotype. Neurology 2017; 89 (10) 1035-1042
  • 115 Samanta D. Changing landscape of Dravet syndrome management: an overview. Neuropediatrics 2020; 51 (02) 135-145
  • 116 Wang JW, Shi XY, Kurahashi H. et al; Epilepsy Genetic Study Group Japan. Prevalence of SCN1A mutations in children with suspected Dravet syndrome and intractable childhood epilepsy. Epilepsy Res 2012; 102 (03) 195-200
  • 117 Catarino CB, Liu JY, Liagkouras I. et al. Dravet syndrome as epileptic encephalopathy: evidence from long-term course and neuropathology. Brain 2011; 134 (Pt 10): 2982-3010
  • 118 Pal DK, Pong AW, Chung WK. Genetic evaluation and counseling for epilepsy. Nat Rev Neurol 2010; 6 (08) 445-453
  • 119 Chipaux M, Villeneuve N, Sabouraud P. et al. Unusual consequences of status epilepticus in Dravet syndrome. Seizure 2010; 19 (03) 190-194
  • 120 Takayanagi M, Haginoya K, Umehara N. et al. Acute encephalopathy with a truncation mutation in the SCN1A gene: a case report. Epilepsia 2010; 51 (09) 1886-1888
  • 121 Yu FH, Mantegazza M, Westenbroek RE. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 2006; 9 (09) 1142-1149
  • 122 Chiron C, Marchand MC, Tran A. et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 2000; 356 (9242): 1638-1642
  • 123 Thanh TN, Chiron C, Dellatolas G. et al. Long-term efficacy and tolerance of stiripentaol in severe myoclonic epilepsy of infancy (Dravet's syndrome). Arch Pediatr 2002; 9 (11) 1120-1127
  • 124 Wirrell EC, Laux L, Franz DN. et al. Stiripentol in Dravet syndrome: results of a retrospective U.S. study. Epilepsia 2013; 54 (09) 1595-1604
  • 125 Quilichini PP, Chiron C, Ben-Ari Y, Gozlan H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABA-A receptor channels. Epilepsia 2006; 47 (04) 704-716
  • 126 Coppola G, Capovilla G, Montagnini A. et al. Topiramate as add-on drug in severe myoclonic epilepsy in infancy: an Italian multicenter open trial. Epilepsy Res 2002; 49 (01) 45-48
  • 127 Caraballo RH, Cersósimo R, De los Santos C. Levetiracetam-induced seizure aggravation associated with continuous spikes and waves during slow sleep in children with refractory epilepsies. Epileptic Disord 2010; 12 (02) 146-150
  • 128 Tanabe T, Awaya Y, Matsuishi T. et al. Management of and prophylaxis against status epilepticus in children with severe myoclonic epilepsy in infancy (SMEI; Dravet syndrome): a nationwide questionnaire survey in Japan. Brain Dev 2008; 30 (10) 629-635
  • 129 Malow BA, Levy K, Maturen K, Bowes R. Obstructive sleep apnea is common in medically refractory epilepsy patients. Neurology 2000; 55 (07) 1002-1007
  • 130 Ceulemans B, Boel M, Claes L. et al. Severe myoclonic epilepsy in infancy: toward an optimal treatment. J Child Neurol 2004; 19 (07) 516-521
  • 131 Saito Y, Oguni H, Awaya Y, Hayashi K, Osawa M. Phenytoin-induced choreoathetosis in patients with severe myoclonic epilepsy in infancy. Neuropediatrics 2001; 32 (05) 231-235
  • 132 Pratico AD, Ruggieri M, Falsaperla R, Pavone P. A probable topiramate-induced limbs paraesthesia and rigid fingers flexion. Curr Drug Saf 2018; 13 (02) 131-136
  • 133 Nicolai J, Gunning B, Leroy PL, Ceulemans B, Vles JS. Acute hepatic injury in four children with Dravet syndrome: valproic acid, topiramate or acetaminophen?. Seizure 2008; 17 (01) 92-97
  • 134 Devinsky O, Cross JH, Laux L. et al; Cannabidiol in Dravet Syndrome Study Group. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med 2017; 376 (21) 2011-2020
  • 135 Devinsky O, Nabbout R, Miller I. et al. Long-term cannabidiol treatment in patients with Dravet syndrome: an open-label extension trial. Epilepsia 2019; 60 (02) 294-302
  • 136 Heinzen EL, Yoon W, Tate SK. et al. Nova2 interacts with a cis-acting polymorphism to influence the proportions of drug-responsive splice variants of SCN1A. Am J Hum Genet 2007; 80 (05) 876-883
  • 137 Abe T, Seo T, Ishitsu T, Nakagawa T, Hori M, Nakagawa K. Association between SCN1A polymorphism and carbamazepine-resistant epilepsy. Br J Clin Pharmacol 2008; 66 (02) 304-307
  • 138 Tate SK, Depondt C, Sisodiya SM. et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A 2005; 102 (15) 5507-5512
  • 139 Manna I, Gambardella A, Bianchi A. et al. A functional polymorphism in the SCN1A gene does not influence antiepileptic drug responsiveness in Italian patients with focal epilepsy. Epilepsia 2011; 52 (05) e40-e44
  • 140 Schoonjans AS, Lagae L, Ceulemans B. Low-dose fenfluramine in the treatment of neurologic disorders: experience in Dravet syndrome. Ther Adv Neurol Disorder 2015; 8 (06) 328-338
  • 141 Schoonjans A, Paelinck BP, Marchau F. et al. Low-dose fenfluramine significantly reduces seizure frequency in Dravet syndrome: a prospective study of a new cohort of patients. Eur J Neurol 2017; 24 (02) 309-314
  • 142 McNally MA, Hartman AL. Ketone bodies in epilepsy. J Neurochem 2012; 121 (01) 28-35
  • 143 Bough KJ, Rho JM. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 2007; 48 (01) 43-58
  • 144 Stafford P, Abdelwahab MG, Kim DY, Preul MC, Rho JM, Scheck AC. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr Metab (Lond) 2010; 7: 74
  • 145 Cersósimo RO, Bartuluchi M, Fortini S, Soraru A, Pomata H, Caraballo RH. Vagus nerve stimulation: effectiveness and tolerability in 64 paediatric patients with refractory epilepsies. Epileptic Disord 2011; 13 (04) 382-388
  • 146 Zamponi N, Passamonti C, Cappanera S, Petrelli C. Clinical course of young patients with Dravet syndrome after vagal nerve stimulation. Eur J Paediatr Neurol 2011; 15 (01) 8-14