Semin Thromb Hemost 2022; 48(03): 356-381
DOI: 10.1055/s-0041-1730346
Review Article

Hemostasis and Fibrinolysis following Aneurysmal Subarachnoid Hemorrhage: A Systematic Review on Additional Knowledge from Dynamic Assays and Potential Treatment Targets

Christine Lodberg Hvas
1   Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
2   Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
,
Anne-Mette Hvas
2   Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
3   Thrombosis and Hemostasis Research Unit, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
› Institutsangaben
Funding Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark, and Health Research Foundation of Central Denmark Region financed leave from clinical work for C.L.H.

Abstract

Mortality after aneurysmal subarachnoid hemorrhage (aSAH) is augmented by rebleeding and delayed cerebral ischemia (DCI). A range of assays evaluating the dynamic process of blood coagulation, from activation of clotting factors to fibrinolysis, has emerged and a comprehensive review of hemostasis and fibrinolysis following aSAH may reveal targets of treatment. We conducted a systematic review of existing literature assessing coagulation and fibrinolysis following aSAH, but prior to treatment. PubMed, Embase, and Web of Science were searched on November 18, 2020, without time boundaries. In total, 45 original studies were eventually incorporated into this systematic review, divided into studies presenting data only from conventional or quantitative assays (n = 22) and studies employing dynamic assays (n = 23). Data from conventional or quantitative assays indicated increased platelet activation, whereas dynamic assays detected platelet dysfunction possibly related to an increased risk of rebleeding. Secondary hemostasis was activated in conventional, quantitative, and dynamic assays and this was related to poor neurological outcome and mortality. Studies systematically investigating fibrinolysis were sparse. Measurements from conventional or quantitative assays, as well as dynamic fibrinolysis assays, revealed conflicting results with normal or increased lysis and changes were not associated with outcome. In conclusion, dynamic assays were able to detect reduced platelet function, not revealed by conventional or quantitative assays. Activation of secondary hemostasis was found in both dynamic and nondynamic assays, while changes in fibrinolysis were not convincingly demonstrable in either dynamic or conventional or quantitative assays. Hence, from a mechanistic point of view, desmopressin to prevent rebleeding and heparin to prevent DCI may hold potential as therapeutic options. As changes in fibrinolysis were not convincingly demonstrated and not related to outcome, the use of tranexamic acid prior to aneurysm closure is not supported by this review.



Publikationsverlauf

Artikel online veröffentlicht:
14. Juli 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Steiner T, Juvela S, Unterberg A, Jung C, Forsting M, Rinkel G. European Stroke Organization. European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 2013; 35 (02) 93-112
  • 2 Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet 2017; 389 (10069): 655-666
  • 3 Rincon F, Rossenwasser RH, Dumont A. The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery 2013; 73 (02) 217-222 , discussion 212–213
  • 4 Lovelock CE, Rinkel GJ, Rothwell PM. Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology 2010; 74 (19) 1494-1501
  • 5 Lantigua H, Ortega-Gutierrez S, Schmidt JM. et al. Subarachnoid hemorrhage: who dies, and why?. Crit Care 2015; 19: 309
  • 6 La Pira B, Singh TD, Rabinstein AA, Lanzino G. Time trends in outcomes after aneurysmal subarachnoid hemorrhage over the past 30 years. Mayo Clin Proc 2018; 93 (12) 1786-1793
  • 7 Rass V, Helbok R. Early brain injury after poor-grade subarachnoid hemorrhage. Curr Neurol Neurosci Rep 2019; 19 (10) 78
  • 8 Starke RM, Connolly Jr ES. Participants in the International Multi-Disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage. Rebleeding after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2011; 15 (02) 241-246
  • 9 Post R, Germans MR, Tjerkstra MA. et al; ULTRA Investigators. Ultra-early tranexamic acid after subarachnoid haemorrhage (ULTRA): a randomised controlled trial. Lancet 2021; 397 (10269): 112-118
  • 10 Anker-Møller T, Troldborg A, Sunde N, Hvas AM. Evidence for the use of tranexamic acid in subarachnoid and subdural hemorrhage: a systematic review. Semin Thromb Hemost 2017; 43 (07) 750-758
  • 11 Geraghty JR, Testai FD. Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep 2017; 19 (12) 50
  • 12 Clarke JV, Suggs JM, Diwan D. et al. Microvascular platelet aggregation and thrombosis after subarachnoid hemorrhage: a review and synthesis. J Cereb Blood Flow Metab 2020; 40 (08) 1565-1575
  • 13 Dorhout Mees SM, van den Bergh WM, Algra A, Rinkel GJ. Antiplatelet therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 2007; (04) CD006184
  • 14 van den Bergh WM, Algra A, Dorhout Mees SM. et al; MASH Study Group. Randomized controlled trial of acetylsalicylic acid in aneurysmal subarachnoid hemorrhage: the MASH Study. Stroke 2006; 37 (09) 2326-2330
  • 15 Hop JW, Rinkel GJ, Algra A, Berkelbach van der Sprenkel JW, van Gijn J. Randomized pilot trial of postoperative aspirin in subarachnoid hemorrhage. Neurology 2000; 54 (04) 872-878
  • 16 Juvela S. Aspirin and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg 1995; 82 (06) 945-952
  • 17 van den Bergh WM, Kerr RS, Algra A, Rinkel GJ, Molyneux AJ. International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. Effect of antiplatelet therapy for endovascular coiling in aneurysmal subarachnoid hemorrhage. Stroke 2009; 40 (06) 1969-1972
  • 18 Ditz C, Machner B, Schacht H. et al. Effects of post-interventional antiplatelet therapy on angiographic vasospasm, delayed cerebral ischemia, and clinical outcome after aneurysmal subarachnoid hemorrhage: a single-center experience. Neurosurg Rev 2021; (e-pub ahead of print) DOI: 10.1007/s10143-021-01477-6.
  • 19 Haley Jr EC, Kassell NF, Torner JC. The international cooperative study on the timing of aneurysm surgery. the North American experience. Stroke 1992; 23 (02) 205-214
  • 20 Molyneux AJ, Kerr RS, Yu LM. et al; International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 2005; 366 (9488): 809-817
  • 21 Brummel-Ziedins KE, Wolberg AS. Global assays of hemostasis. Curr Opin Hematol 2014; 21 (05) 395-403
  • 22 Lisman T. Interpreting hemostatic profiles assessed with viscoelastic tests in patients with cirrhosis. J Clin Gastroenterol 2020; 54 (04) 389-391
  • 23 Lisman T. Decreased plasma fibrinolytic potential as a risk for venous and arterial thrombosis. Semin Thromb Hemost 2017; 43 (02) 178-184
  • 24 Larsen JB, Hvas AM. Fibrin clot formation and lysis in plasma. Methods Protoc 2020; 3 (04) E67
  • 25 PRISMA. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Accessed April 10, 2021 at: http://www.prisma-statement.org/
  • 26 Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies and Quality Assessment Tool for Controlled Intervention Studies. Accessed April 10, 2021 at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools
  • 27 Kumar M, Cao W, McDaniel JK. et al. Plasma ADAMTS13 activity and von Willebrand factor antigen and activity in patients with subarachnoid haemorrhage. Thromb Haemost 2017; 117 (04) 691-699
  • 28 Ding YS, Sun B, Jiang JX, Zhang Q, Lu J, Gao GZ. Increased serum concentrations of signal peptide-Cub-EGF domain-containing protein-1 in patients with aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2016; 459: 117-122
  • 29 Tang QF, Lu SQ, Zhao YM, Qian JX. The changes of von Willebrand factor/a disintegrin-like and metalloprotease with thrombospondin type I repeats-13 balance in aneurysmal subarachnoid hemorrhage. Int J Clin Exp Med 2015; 8 (01) 1342-1348
  • 30 Sadamasa N, Yoshida K, Narumi O, Chin M, Yamagata S. Prediction of mortality by hematological parameters on admission in patients with subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 2011; 51 (11) 745-748
  • 31 Hirashima Y, Hamada H, Kurimoto M, Origasa H, Endo S. Decrease in platelet count as an independent risk factor for symptomatic vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 2005; 102 (05) 882-887
  • 32 Geraldini F, De Cassai A, Correale C. et al. Predictors of deep-vein thrombosis in subarachnoid hemorrhage: a retrospective analysis. Acta Neurochir (Wien) 2020; 162 (09) 2295-2301
  • 33 Xie B, Lin Y, Wu X, Yu L, Zheng S, Kang D. reduced admission serum fibrinogen levels predict 6-month mortality of poor-grade aneurysmal subarachnoid hemorrhage. World Neurosurg 2020; 136: e24-e32
  • 34 Zhao DD, Guo ZD, He S, Yin C. High intracranial pressure may be the initial inducer of elevated plasma D-dimer level after aneurysmal subarachnoid haemorrhage. Int J Neurosci 2020; 130 (07) 694-699
  • 35 Wiciński M, Al Drawi AS, Malinowski B, Stolarek W. Evaluation of vascular endothelial growth factor A and selected parameters of coagulation and fibrinolysis in a group of patients with subarachnoid haemorrhage. BioMed Res Int 2019; 2019: 8759231
  • 36 Liu JH, Li XK, Chen ZB. et al. D-dimer may predict poor outcomes in patients with aneurysmal subarachnoid hemorrhage: a retrospective study. Neural Regen Res 2017; 12 (12) 2014-2020
  • 37 Al-Drawi AS, Wiciński M, Grześk G. et al. Evaluation of VCAM-1 and ICAM-1 concentration and values of global tests concerning the coagulation system of patients suffering from subarachnoid haemorrage. Ann Agric Environ Med 2016; 23 (04) 654-659
  • 38 Ji Y, Meng QH, Wang ZG. Changes in the coagulation and fibrinolytic system of patients with subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 2014; 54 (06) 457-464
  • 39 Morga R, Czepko R, Dembińska-Kieć A, Danilewicz B. Assessment of the haemostatic system in patients surgically treated for ruptured cerebral aneurysm. Neurol Neurochir Pol 2007; 41 (04) 296-305
  • 40 Ebihara T, Kinoshita K, Utagawa A. et al. Changes in coagulative and fibrinolytic activities in patients with intracranial hemorrhage. Acta Neurochir Suppl (Wien) 2006; 96: 69-73
  • 41 Antovic J, Bakic M, Zivkovic M, Ilic A, Blombäck M. Blood coagulation and fibrinolysis in acute ischaemic and haemorrhagic (intracerebral and subarachnoid haemorrhage) stroke: does decreased plasmin inhibitor indicate increased fibrinolysis in subarachnoid haemorrhage compared to other types of stroke?. Scand J Clin Lab Invest 2002; 62 (03) 195-199
  • 42 Nina P, Schisano G, Chiappetta F. et al. A study of blood coagulation and fibrinolytic system in spontaneous subarachnoid hemorrhage. Correlation with Hunt-Hess grade and outcome. Surg Neurol 2001; 55 (04) 197-203
  • 43 Sasaki T, Kodama N, Kawakami M. et al. Urokinase cisternal irrigation therapy for prevention of symptomatic vasospasm after aneurysmal subarachnoid hemorrhage: a study of urokinase concentration and the fibrinolytic system. Stroke 2000; 31 (06) 1256-1262
  • 44 Peltonen S, Juvela S, Kaste M, Lassila R. Hemostasis and fibrinolysis activation after subarachnoid hemorrhage. J Neurosurg 1997; 87 (02) 207-214
  • 45 Kanamaru K, Waga S, Tanaka K. Plasma levels of protein C, protein S, and antithrombin III in patients with subarachnoid haemorrhage. Acta Neurochir (Wien) 1997; 139 (02) 134-140
  • 46 O'Neill P, Walton S, Foy PM, Shaw MD. Does thrombin prevent cerebral vasospasm following aneurysmal subarachnoid haemorrhage?. Br J Neurosurg 1992; 6 (04) 313-319
  • 47 Ameriso SF, Wong VL, Ishii H. et al. Hematogenous factors and prediction of delayed ischemic deficit after subarachnoid hemorrhage. Stroke 1992; 23 (10) 1404-1409
  • 48 Fletcher AP, Alkjaersig N, Davies A. et al. Blood coagulation and plasma fibrinolytic enzyme system pathophysiology in stroke. Stroke 1976; 7 (04) 337-348
  • 49 Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Koike T, Tanaka R. Ultra-early rebleeding in spontaneous subarachnoid hemorrhage. J Neurosurg 1996; 84 (01) 35-42
  • 50 Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Koike T, Tanaka R. Hemostasis in spontaneous subarachnoid hemorrhage. Neurosurgery 1995; 37 (02) 226-234
  • 51 Fujii Y, Takeuchi S, Sasaki O, Minakawa T, Koike T, Tanaka R. Serial changes of hemostasis in aneurysmal subarachnoid hemorrhage with special reference to delayed ischemic neurological deficits. J Neurosurg 1997; 86 (04) 594-602
  • 52 He Q, Zhou Y, Liu C. et al. Thromboelastography with platelet mapping detects platelet dysfunction in patients with aneurysmal subarachnoid hemorrhage with rebleeding. Neuropsychiatr Dis Treat 2019; 15: 3443-3451
  • 53 Hvas CL, Lauridsen SV, Pedersen ES, Gyldenholm T, Hvas AM. Ex vivo effect of hemostatic therapy in subarachnoid and intracerebral hemorrhage. Thromb Res 2020; 189: 42-47
  • 54 Lauridsen SV, Hvas CL, Sandgaard E. et al. Thromboelastometry shows early hypercoagulation in patients with spontaneous subarachnoid hemorrhage. World Neurosurg 2019; 130: e140-e149
  • 55 Vahtera AS, Junttila EK, Jalkanen LV. et al. Activation of blood coagulation after aneurysmal subarachnoid hemorrhage: a prospective observational trial of rotational thromboelastometry. World Neurosurg 2019; 122: e334-e341
  • 56 Ettinger MG. Coagulation abnormalities in subarachnoid hemorrhage. Stroke 1970; 1 (03) 139-142
  • 57 Miao W, Zhao K, Deng W, Teng J. Coagulation factor hyperfunction after subarachnoid hemorrhage induces deep venous thrombosis. World Neurosurg 2018; 110: e46-e52
  • 58 Ohkuma H, Suzuki S, Kimura M, Sobata E. Role of platelet function in symptomatic cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 1991; 22 (07) 854-859
  • 59 Hirashima Y, Endo S, Kurimoto M, Tsukamoto E, Takaku A. Platelet-activating factor and antiphospholipid antibodies in subarachnoid haemorrhage. Acta Neurochir (Wien) 1994; 128 (1-4): 144-149
  • 60 Hirashima Y, Kurimoto M, Tsukamoto E, Endo S, Takaku A. Anti-phospholipid antibodies and cerebral vasospasm following subarachnoid haemorrhage. Acta Neurochir (Wien) 1995; 135 (3-4): 191-197
  • 61 Tsementzis SA, Gill JS, Hitchcock ER, Hartley JA, Gill SK, Beevers DG. Reduced platelet function in subarachnoid hemorrhage. J Neurosurg 1986; 64 (06) 907-910
  • 62 Tsementzis SA, Honan WP, Nightingale S, Hitchcock ER, Meyer CH. Fibrinolytic activity after subarachnoid haemorrhage and the effect of tranexamic acid. Acta Neurochir (Wien) 1990; 103 (3-4): 116-121
  • 63 von der Brelie C, Subai A, Limperger V, Rohde V, Dempfle A, Boström A. In vitro analysis of platelet function in acute aneurysmal subarachnoid haemorrhage. Neurosurg Rev 2018; 41 (02) 531-538
  • 64 Larsen CC, Sørensen B, Nielsen JD, Astrup J. Reduced clot-stability during the first 6 hours after aneurysmal subarachnoid haemorrhage--a prospective case-control study. Thromb Res 2012; 129 (05) e229-e232
  • 65 Lauridsen SV, Hvas CL, Sandgaard E, Gyldenholm T, Tønnesen EK, Hvas AM. No hyperfibrinolysis following subarachnoid or intracerebral haemorrhage: a prospective cohort study. Blood Coagul Fibrinolysis 2019; 30 (07) 341-349
  • 66 El-Khawas K, Lloyd-Donald P, Hart GK. et al. Prospective longitudinal evaluation of coagulation with novel thromboelastography technology in patients after subarachnoid hemorrhage: a pilot study. World Neurosurg 2020; 136: e181-e195
  • 67 Ramchand P, Nyirjesy S, Frangos S. et al. Thromboelastography parameter predicts outcome after subarachnoid hemorrhage: an exploratory analysis. World Neurosurg 2016; 96: 215-221
  • 68 Frontera JA, Provencio JJ, Sehba FA. et al. The role of platelet activation and inflammation in early brain injury following subarachnoid hemorrhage. Neurocrit Care 2017; 26 (01) 48-57
  • 69 Prodan CI, Vincent AS, Kirkpatrick AC, Hoover SL, Dale GL. Higher levels of coated-platelets are observed in patients with subarachnoid hemorrhage but lower levels are associated with increased mortality at 30 days. J Neurol Sci 2013; 334 (1-2): 126-129
  • 70 Windeløv NA, Welling KL, Ostrowski SR, Johansson PI. The prognostic value of thrombelastography in identifying neurosurgical patients with worse prognosis. Blood Coagul Fibrinolysis 2011; 22 (05) 416-419
  • 71 Smith RR, Upchurch JJ. Monitoring antifibrinolytic therapy in subarachnoid hemorrhage. J Neurosurg 1973; 38 (03) 339-344
  • 72 Mannucci PM. Desmopressin (DDAVP) in the treatment of bleeding disorders: the first 20 years. Blood 1997; 90 (07) 2515-2521
  • 73 Lethagen S, Nilsson IM. DDAVP-induced enhancement of platelet retention: its dependence on platelet-von Willebrand factor and the platelet receptor GP IIb/IIIa. Eur J Haematol 1992; 49 (01) 7-13
  • 74 Frontera JA, Lewin III JJ, Rabinstein AA. et al. Guideline for reversal of antithrombotics in intracranial hemorrhage: a statement for healthcare professionals from the Neurocritical Care Society and Society of Critical Care Medicine. Neurocrit Care 2016; 24 (01) 6-46
  • 75 Andersen LK, Hvas AM, Hvas CL. Effect of desmopressin on platelet dysfunction during antiplatelet therapy: a systematic review. Neurocrit Care 2020; (e-pub ahead of print) DOI: 10.1007/s12028-020-01055-6.
  • 76 Francoeur CL, Roh D, Schmidt JM. et al. Desmopressin administration and rebleeding in subarachnoid hemorrhage: analysis of an observational prospective database. J Neurosurg 2019; 130: 502-508
  • 77 Boluijt J, Meijers JC, Rinkel GJ, Vergouwen MD. Hemostasis and fibrinolysis in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a systematic review. J Cereb Blood Flow Metab 2015; 35 (05) 724-733
  • 78 Zanaty M, Osorno-Cruz C, Byer S. et al. Tirofiban protocol protects against delayed cerebral ischemia: a case-series study. Neurosurgery 2020; 87 (05) E552-E556
  • 79 Connolly Jr ES, Rabinstein AA, Carhuapoma JR. et al; American Heart Association Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Cardiovascular Nursing, Council on Cardiovascular Surgery and Anesthesia, Council on Clinical Cardiology. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2012; 43 (06) 1711-1737
  • 80 Khattar NK, Bak E, White AC, James RF. Heparin treatment in aneurysmal subarachnoid hemorrhage: a review of human studies. Acta Neurochir Suppl (Wien) 2020; 127: 15-19
  • 81 Siironen J, Juvela S, Varis J. et al. No effect of enoxaparin on outcome of aneurysmal subarachnoid hemorrhage: a randomized, double-blind, placebo-controlled clinical trial. J Neurosurg 2003; 99 (06) 953-959
  • 82 Wurm G, Tomancok B, Nussbaumer K, Adelwöhrer C, Holl K. Reduction of ischemic sequelae following spontaneous subarachnoid hemorrhage: a double-blind, randomized comparison of enoxaparin versus placebo. Clin Neurol Neurosurg 2004; 106 (02) 97-103
  • 83 James RF, Khattar NK, Aljuboori ZS. et al. Continuous infusion of low-dose unfractionated heparin after aneurysmal subarachnoid hemorrhage: a preliminary study of cognitive outcomes. J Neurosurg 2018; 130: 1460-1467 , 2019
  • 84 Simard JM, Aldrich EF, Schreibman D, James RF, Polifka A, Beaty N. Low-dose intravenous heparin infusion in patients with aneurysmal subarachnoid hemorrhage: a preliminary assessment. J Neurosurg 2013; 119 (06) 1611-1619
  • 85 Wessell A, Kole MJ, Badjatia N. et al. High compliance with scheduled nimodipine is associated with better outcome in aneurysmal subarachnoid hemorrhage patients cotreated with heparin infusion. Front Neurol 2017; 8: 268
  • 86 Bruder M, Won SY, Kashefiolasl S. et al. Effect of heparin on secondary brain injury in patients with subarachnoid hemorrhage: an additional ‘H’ therapy in vasospasm treatment. J Neurointerv Surg 2017; 9 (07) 659-663
  • 87 Diringer MN, Bleck TP, Claude Hemphill III J. et al; Neurocritical Care Society. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society's Multidisciplinary Consensus Conference. Neurocrit Care 2011; 15 (02) 211-240
  • 88 Maurice-Williams RS. Prolonged antifibrinolysis: an effective non-surgical treatment for ruptured intracranial aneurysms?. BMJ 1978; 1 (6118): 945-947
  • 89 Gaberel T, Magheru C, Emery E, Derlon JM. Antifibrinolytic therapy in the management of aneurismal subarachnoid hemorrhage revisited. A meta-analysis. Acta Neurochir (Wien) 2012; 154 (01) 1-9 , discussion 9
  • 90 Saes JL, Schols SEM, van Heerde WL, Nijziel MR. Hemorrhagic disorders of fibrinolysis: a clinical review. J Thromb Haemost 2018; 16: 1498-1509
  • 91 von Meijenfeldt FA, Lisman T. Fibrinolysis in patients with liver disease. Semin Thromb Hemost 2021; (e-pub ahead of print) DOI: 10.1055/s-0040-1718924.
  • 92 Pepperell D, Morel-Kopp M, Ward C. Clinical application of fibrinolytic assays. In: Kolev K. ed. Fibrinolysis and Thrombolysis Croatia. InTechOpen; 2014: 125-162
  • 93 Kassell NF, Peerless SJ, Durward QJ, Beck DW, Drake CG, Adams HP. Treatment of ischemic deficits from vasospasm with intravascular volume expansion and induced arterial hypertension. Neurosurgery 1982; 11 (03) 337-343
  • 94 Oddo M, Poole D, Helbok R. et al. Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations. Intensive Care Med 2018; 44 (04) 449-463