Semin Liver Dis 2021; 41(03): 368-392
DOI: 10.1055/s-0041-1731016
Review Article

Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine

David A. Kukla
1   Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
,
Salman R. Khetani
1   Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
› Institutsangaben
Funding U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Allergy and Infectious Diseases, 1R21AI147137-01, U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 1R01DK115747-01A1

Abstract

Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.



Publikationsverlauf

Artikel online veröffentlicht:
17. Juni 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332 (6037): 1519-1523
  • 2 Magdaleno F, Blajszczak CC, Nieto N. Key events participating in the pathogenesis of alcoholic liver disease. Biomolecules 2017; 7 (01) E9
  • 3 Seitz HK, Bataller R, Cortez-Pinto H. et al. Publisher correction: alcoholic liver disease. Nat Rev Dis Primers 2018; 4 (01) 18
  • 4 WHO. Global health sector strategy on viral hepatitis 2016–2021: towards ending viral hepatitis. World Health Organization; 2016. . Accessed April 29, 2021 at: https://apps.who.int/iris/bitstream/handle/10665/246177/WHO-HIV-2016.06-eng.pdf?sequence=1
  • 5 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68 (06) 394-424
  • 6 Akinyemiju T, Abera S, Ahmed M. et al; Global Burden of Disease Liver Cancer Collaboration. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncol 2017; 3 (12) 1683-1691
  • 7 Teufel A, Itzel T, Erhart W. et al. Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology 2016; 151 (03) 513-525.e0
  • 8 Minkah NK, Schafer C, Kappe SHI. Humanized mouse models for the study of human malaria parasite biology, pathogenesis, and immunity. Front Immunol 2018; 9: 807
  • 9 Shih H, Pickwell GV, Guenette DK, Bilir B, Quattrochi LC. Species differences in hepatocyte induction of CYP1A1 and CYP1A2 by omeprazole. Hum Exp Toxicol 1999; 18 (02) 95-105
  • 10 Wieland SF. The chimpanzee model for hepatitis B virus infection. Cold Spring Harb Perspect Med 2015; 5 (06) a021469
  • 11 Tennant BC, Gerin JL. The woodchuck model of hepatitis B virus infection. ILAR J 2001; 42 (02) 89-102
  • 12 Xu X, Chen H, Cao X, Ben K. Efficient infection of tree shrew (Tupaia belangeri) with hepatitis C virus grown in cell culture or from patient plasma. J Gen Virol 2007; 88 (Pt 9): 2504-2512
  • 13 Underhill GH, Khetani SR. Emerging trends in modeling human liver disease in vitro . APL Bioeng 2019; 3 (04) 040902
  • 14 Underhill GH, Khetani SR. Bioengineered liver models for drug testing and cell differentiation studies. Cell Mol Gastroenterol Hepatol 2017; 5 (03) 426.e1-439.e1
  • 15 Underhill GH, Khetani SR. Advances in engineered human liver platforms for drug metabolism studies. Drug Metab Dispos 2018; 46 (11) 1626-1637
  • 16 Khetani SR, Berger DR, Ballinger KR, Davidson MD, Lin C, Ware BR. Microengineered liver tissues for drug testing. J Lab Autom 2015; 20 (03) 216-250
  • 17 Bhatia SN, Balis UJ, Yarmush ML, Toner M. Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions. Biotechnol Prog 1998; 14 (03) 378-387
  • 18 D'Arcangelo E, McGuigan AP. Micropatterning strategies to engineer controlled cell and tissue architecture in vitro. Biotechniques 2015; 58 (01) 13-23
  • 19 Singhvi R, Kumar A, Lopez GP. et al. Engineering cell shape and function. Science 1994; 264 (5159): 696-698
  • 20 Bhatia SN, Balis UJ, Yarmush ML, Toner M. Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J Biomater Sci Polym Ed 1998; 9 (11) 1137-1160
  • 21 Khetani SR, Szulgit G, Del Rio JA, Barlow C, Bhatia SN. Exploring interactions between rat hepatocytes and nonparenchymal cells using gene expression profiling. Hepatology 2004; 40 (03) 545-554
  • 22 Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol 2008; 26 (01) 120-126
  • 23 Davidson MD, Lehrer M, Khetani SR. Hormone and drug-mediated modulation of glucose metabolism in a microscale model of the human liver. Tissue Eng Part C Methods 2015; 21 (07) 716-725
  • 24 Ware BR, Durham MJ, Monckton CP, Khetani SR. A cell culture platform to maintain long-term phenotype of primary human hepatocytes and endothelial cells. Cell Mol Gastroenterol Hepatol 2017; 5 (03) 187-207
  • 25 Davidson MD, Kukla DA, Khetani SR. Microengineered cultures containing human hepatic stellate cells and hepatocytes for drug development. Integr Biol 2017; 9 (08) 662-677
  • 26 Nguyen TV, Ukairo O, Khetani SR. et al. Establishment of a hepatocyte-kupffer cell coculture model for assessment of proinflammatory cytokine effects on metabolizing enzymes and drug transporters. Drug Metab Dispos 2015; 43 (05) 774-785
  • 27 Davidson MD, Khetani SR. Intermittent starvation extends the functional lifetime of primary human hepatocyte cultures. Toxicol Sci 2020; 174 (02) 266-277
  • 28 Ware BR, Brown GE, Soldatow VY, LeCluyse EL, Khetani SR. Long-term engineered cultures of primary mouse hepatocytes for strain and species comparison studies during drug development. Gene Expr 2019; 19 (03) 199-214
  • 29 Ukairo O, Kanchagar C, Moore A. et al. Long-term stability of primary rat hepatocytes in micropatterned cocultures. J Biochem Mol Toxicol 2013; 27 (03) 204-212
  • 30 Berger DR, Ware BR, Davidson MD, Allsup SR, Khetani SR. Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro. Hepatology 2015; 61 (04) 1370-1381
  • 31 Ware BR, Liu JS, Monckton CP, Ballinger KR, Khetani SR. Micropatterned coculture with 3T3-J2 fibroblasts enhances hepatic functions and drug screening utility of HepaRG cells. Toxicol Sci 2021; 181 (01) 90-104
  • 32 LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 2012; 42 (06) 501-548
  • 33 Godoy P, Hewitt NJ, Albrecht U. et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87 (08) 1315-1530
  • 34 Bell CC, Hendriks DFG, Moro SML. et al. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 2016; 6: 25187
  • 35 Wang Z, Li W, Jing H. et al. Generation of hepatic spheroids using human hepatocyte-derived liver progenitor-like cells for hepatotoxicity screening. Theranostics 2019; 9 (22) 6690-6705
  • 36 Lee JM, Park DY, Yang L. et al. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening. Sci Rep 2018; 8 (01) 17145
  • 37 Liao W, Wang J, Xu J. et al. High-throughput three-dimensional spheroid tumor model using a novel stamp-like tool. J Tissue Eng 2019; 10: 2041731419889184
  • 38 Liu Y, Zhang L, Wei J, Yan S, Yu J, Li X. Promoting hepatocyte spheroid formation and functions by coculture with fibroblasts on micropatterned electrospun fibrous scaffolds. J Mater Chem B Mater Biol Med 2014; 2 (20) 3029-3040
  • 39 Choi YY, Seok JI, Kim DS. Flow-based three-dimensional co-culture model for long-term hepatotoxicity prediction. Micromachines (Basel) 2019; 11 (01) E36
  • 40 Mun SJ, Ryu JS, Lee MO. et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids. J Hepatol 2019; 71 (05) 970-985
  • 41 Shinozawa T, Kimura M, Cai Y. et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology 2021; 160 (03) 831.e10-846.e10
  • 42 Velazquez JJ, LeGraw R, Moghadam F. et al. Gene regulatory network analysis and engineering directs development and vascularization of multilineage human liver organoids. Cell Syst 2021; 12 (01) 41.e11-55.e11
  • 43 Hendriks D, Artegiani B, Hu H, Chuva de Sousa Lopes S, Clevers H. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat Protoc 2021; 16 (01) 182-217
  • 44 Guye P, Ebrahimkhani MR, Kipniss N. et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun 2016; 7: 10243
  • 45 Nguyen D, Robbins J, Crogan-Grundy C. et al. Functional characterization of three-dimensional (3d) human liver tissues generated by an automated bioprinting platform. FASEB J 2015; 29 (Suppl. 01) LB424
  • 46 Nguyen DG, Funk J, Robbins JB. et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One 2016; 11 (07) e0158674
  • 47 Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse EL. Editor's highlight: modeling compound-induced fibrogenesis in vitro using three-dimensional bioprinted human liver tissues. Toxicol Sci 2016; 154 (02) 354-367
  • 48 Grigoryan B, Paulsen SJ, Corbett DC. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 2019; 364 (6439): 458-464
  • 49 Lewis PL, Yan M, Su J, Shah RN. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels. Acta Biomater 2019; 85: 84-93
  • 50 Ma X, Qu X, Zhu W. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 2016; 113 (08) 2206-2211
  • 51 Wang B, Jakus AE, Baptista PM. et al. Functional maturation of induced pluripotent stem cell hepatocytes in extracellular matrix-a comparative analysis of bioartificial liver microenvironments. Stem Cells Transl Med 2016; 5 (09) 1257-1267
  • 52 Fiorini GS, Chiu DT. Disposable microfluidic devices: fabrication, function, and application. Biotechniques 2005; 38 (03) 429-446
  • 53 Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol 2017; 11: 622-630
  • 54 Kang YBA, Eo J, Mert S, Yarmush ML, Usta OB. Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep 2018; 8 (01) 8951
  • 55 Kietzmann T. Liver zonation in health and disease: hypoxia and hypoxia-inducible transcription factors as concert masters. Int J Mol Sci 2019; 20 (09) E2347
  • 56 Domansky K, Inman W, Serdy J, Dash A, Lim MH, Griffith LG. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 2010; 10 (01) 51-58
  • 57 Vivares A, Salle-Lefort S, Arabeyre-Fabre C. et al. Morphological behaviour and metabolic capacity of cryopreserved human primary hepatocytes cultivated in a perfused multiwell device. Xenobiotica 2015; 45 (01) 29-44
  • 58 Esch MB, Prot JM, Wang YI. et al. Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow. Lab Chip 2015; 15 (10) 2269-2277
  • 59 Lee-Montiel FT, George SM, Gough AH. et al. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med (Maywood) 2017; 242 (16) 1617-1632
  • 60 Feaver RE, Cole BK, Lawson MJ. et al. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight 2016; 1 (20) e90954
  • 61 Yu F, Deng R, Hao Tong W. et al. A perfusion incubator liver chip for 3D cell culture with application on chronic hepatotoxicity testing. Sci Rep 2017; 7 (01) 14528-14528
  • 62 Choi JH, Loarca L, De Hoyos-Vega JM. et al. Microfluidic confinement enhances phenotype and function of hepatocyte spheroids. Am J Physiol Cell Physiol 2020; 319 (03) C552-C560
  • 63 Bhise NS, Manoharan V, Massa S. et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 2016; 8 (01) 014101
  • 64 Li Y, Zhang T, Pang Y, Li L, Chen ZN, Sun W. 3D bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of Metuzumab. Biofabrication 2019; 11 (03) 034102
  • 65 Kang YBA, Eo J, Bulutoglu B, Yarmush ML, Usta OB. Progressive hypoxia-on-a-chip: an in vitro oxygen gradient model for capturing the effects of hypoxia on primary hepatocytes in health and disease. Biotechnol Bioeng 2020; 117 (03) 763-775
  • 66 Matsumoto S, Safitri AR, Danoy M. et al. Investigation of the hepatic respiration and liver zonation on rat hepatocytes using an integrated oxygen biosensor in a microscale device. Biotechnol Prog 2019; 35 (05) e2854
  • 67 Crampton AL, Cummins KA, Wood DK. A high-throughput microtissue platform to probe endothelial function in vitro. Integr Biol 2018; 10 (09) 555-565
  • 68 Cummins KA, Crampton AL, Wood DK. A high-throughput workflow to study remodeling of extracellular matrix-based microtissues. Tissue Eng Part C Methods 2019; 25 (01) 25-36
  • 69 Chen Q, Utech S, Chen D, Prodanovic R, Lin JM, Weitz DA. Controlled assembly of heterotypic cells in a core-shell scaffold: organ in a droplet. Lab Chip 2016; 16 (08) 1346-1349
  • 70 Siltanen C, Diakatou M, Lowen J. et al. One step fabrication of hydrogel microcapsules with hollow core for assembly and cultivation of hepatocyte spheroids. Acta Biomater 2017; 50: 428-436
  • 71 Kukla DA, Crampton AL, Wood DK, Khetani SR. Microscale collagen and fibroblast interactions enhance primary human hepatocyte functions in three-dimensional models. Gene Expr 2020; 20 (01) 1-18
  • 72 Palma E, Doornebal EJ, Chokshi S. Precision-cut liver slices: a versatile tool to advance liver research. Hepatol Int 2019; 13 (01) 51-57
  • 73 Olinga P, Schuppan D. Precision-cut liver slices: a tool to model the liver ex vivo. J Hepatol 2013; 58 (06) 1252-1253
  • 74 Martignoni M, Monshouwer M, de Kanter R, Pezzetta D, Moscone A, Grossi P. Phase I and phase II metabolic activities are retained in liver slices from mouse, rat, dog, monkey and human after cryopreservation. Toxicol In Vitro 2004; 18 (01) 121-128
  • 75 Elferink MGL, Olinga P, van Leeuwen EM. et al. Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol 2011; 253 (01) 57-69
  • 76 Vickers AE, Bentley P, Fisher RL. Consequences of mitochondrial injury induced by pharmaceutical fatty acid oxidation inhibitors is characterized in human and rat liver slices. Toxicol In Vitro 2006; 20 (07) 1173-1182
  • 77 Edwards RJ, Price RJ, Watts PS. et al. Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos 2003; 31 (03) 282-288
  • 78 Graaf IA, Groothuis GM, Olinga P. Precision-cut tissue slices as a tool to predict metabolism of novel drugs. Expert Opin Drug Metab Toxicol 2007; 3 (06) 879-898
  • 79 van de Bovenkamp M, Groothuis GM, Draaisma AL. et al. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu. Toxicol Sci 2005; 85 (01) 632-638
  • 80 Prins GH, Luangmonkong T, Oosterhuis D, Mutsaers HAM, Dekker FJ, Olinga P. A pathophysiological model of non-alcoholic fatty liver disease using precision-cut liver slices. Nutrients 2019; 11 (03) E507
  • 81 Klassen LW, Thiele GM, Duryee MJ. et al. An in vitro method of alcoholic liver injury using precision-cut liver slices from rats. Biochem Pharmacol 2008; 76 (03) 426-436
  • 82 Paish HL, Reed LH, Brown H. et al. A bioreactor technology for modeling fibrosis in human and rodent precision-cut liver slices. Hepatology 2019; 70 (04) 1377-1391
  • 83 Lagaye S, Shen H, Saunier B. et al. Efficient replication of primary or culture hepatitis C virus isolates in human liver slices: a relevant ex vivo model of liver infection. Hepatology 2012; 56 (03) 861-872
  • 84 van Midwoud PM, Merema MT, Verweij N, Groothuis GM, Verpoorte E. Hydrogel embedding of precision-cut liver slices in a microfluidic device improves drug metabolic activity. Biotechnol Bioeng 2011; 108 (06) 1404-1412
  • 85 Wu X, Roberto JB, Knupp A. et al. Precision-cut human liver slice cultures as an immunological platform. J Immunol Methods 2018; 455: 71-79
  • 86 van Midwoud PM, Groothuis GMM, Merema MT, Verpoorte E. Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotechnol Bioeng 2010; 105 (01) 184-194
  • 87 Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. Malaria: the past and the present. Microorganisms 2019; 7 (06) E179
  • 88 Lin C, Ballinger KR, Khetani SR. The application of engineered liver tissues for novel drug discovery. Expert Opin Drug Discov 2015; 10 (05) 519-540
  • 89 Ashley EA, Pyae Phyo A, Woodrow CJ. Malaria. Lancet 2018; 391 (10130): 1608-1621
  • 90 Cowman AF, Healer J, Marapana D, Marsh K. Malaria: biology and disease. Cell 2016; 167 (03) 610-624
  • 91 Carrolo M, Giordano S, Cabrita-Santos L. et al. Hepatocyte growth factor and its receptor are required for malaria infection. Nat Med 2003; 9 (11) 1363-1369
  • 92 March S, Ng S, Velmurugan S. et al. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe 2013; 14 (01) 104-115
  • 93 Gerets HHJ, Tilmant K, Gerin B. et al. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol Toxicol 2012; 28 (02) 69-87
  • 94 Karnasuta C, Pavanand K, Chantakulkij S. et al. Complete development of the liver stage of Plasmodium falciparum in a human hepatoma cell line. Am J Trop Med Hyg 1995; 53 (06) 607-611
  • 95 Mazier D, Landau I, Druilhe P. et al. Cultivation of the liver forms of Plasmodium vivax in human hepatocytes. Nature 1984; 307 (5949): 367-369
  • 96 Yalaoui S, Huby T, Franetich J-F. et al. Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection. Cell host Microbe 2008; 4 (03) 283-292
  • 97 Roth A, Maher SP, Conway AJ. et al. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun 2018; 9 (01) 1837
  • 98 Chattopadhyay R, Velmurugan S, Chakiath C. et al. Establishment of an in vitro assay for assessing the effects of drugs on the liver stages of Plasmodium vivax malaria. PLoS One 2010; 5 (12) e14275
  • 99 Epstein JE, Tewari K, Lyke KE. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 2011; 334 (6055): 475-480
  • 100 Ng S, March S, Galstian A. et al. Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro. Dis Model Mech 2014; 7 (02) 215-224
  • 101 Ng S, Schwartz RE, March S. et al. Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Reports 2015; 4 (03) 348-359
  • 102 Chua ACY, Ananthanarayanan A, Ong JJY. et al. Hepatic spheroids used as an in vitro model to study malaria relapse. Biomaterials 2019; 216: 119221
  • 103 Kato N, Comer E, Sakata-Kato T. et al. Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 2016; 538 (7625): 344-349
  • 104 Vera IM, Grilo Ruivo MT, Lemos Rocha LF. et al. Targeting liver stage malaria with metformin. JCI Insight 2019; 4 (24) 127441
  • 105 Camarda G, Jirawatcharadech P, Priestley RS. et al. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat Commun 2019; 10 (01) 3226
  • 106 Mendes AM, Machado M, Gonçalves-Rosa N. et al. A Plasmodium berghei sporozoite-based vaccination platform against human malaria. NPJ Vaccines 2018; 3: 33
  • 107 Suscovich TJ, Fallon JK, Das J. et al. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci Transl Med 2020; 12 (553) eabb4757
  • 108 Kisalu NK, Idris AH, Weidle C. et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat Med 2018; 24 (04) 408-416
  • 109 Simon LV, Hashmi MF, Torp KD. Yellow fever. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2020
  • 110 Waggoner JJ, Rojas A, Pinsky BA. Yellow fever virus: diagnostics for a persistent arboviral threat. J Clin Microbiol 2018; 56 (10) e00827-18
  • 111 Mendes EA, Pilger DRB, Santos Nastri ACS. et al. Sofosbuvir inhibits yellow fever virus in vitro and in patients with acute liver failure. Ann Hepatol 2019; 18 (06) 816-824
  • 112 Lemos FO, França A, Lima Filho ACM. et al. Molecular mechanism for protection against liver failure in human yellow fever infection. Hepatol Commun 2020; 4 (05) 657-669
  • 113 Chevaliez S, Pawlotsky JM. HCV genome and life cycle. In: Tan SL. ed. Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk, UK: Horizon Bioscience; 2006. :Chapter 1
  • 114 Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 1998; 11 (03) 480-496
  • 115 Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol 2020; 5 (06) 796-812
  • 116 Lang J, Vera D, Cheng Y, Tang H. Modeling dengue virus-hepatic cell interactions using human pluripotent stem cell-derived hepatocyte-like cells. Stem Cell Reports 2016; 7 (03) 341-354
  • 117 Basu A, Jain P, Sarkar P. et al. Dengue virus infection of SK Hep1 cells: inhibition of in vitro angiogenesis and altered cytomorphology by expressed viral envelope glycoprotein. FEMS Immunol Med Microbiol 2011; 62 (02) 140-147
  • 118 Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D. An update on Zika virus infection. Lancet 2017; 390 (10107): 2099-2109
  • 119 Zhang L, Shen ZL, Feng Y. et al. Infectivity of Zika virus on primary cells support tree shrew as animal model. Emerg Microbes Infect 2019; 8 (01) 232-241
  • 120 Sherman KE, Rouster SD, Kong LX, Aliota MT, Blackard JT, Dean GE. Zika virus replication and cytopathic effects in liver cells. PLoS One 2019; 14 (03) e0214016
  • 121 Tricot T, Helsen N, Kaptein SJF, Neyts J, Verfaillie CM. Human stem cell-derived hepatocyte-like cells support Zika virus replication and provide a relevant model to assess the efficacy of potential antivirals. PLoS One 2018; 13 (12) e0209097
  • 122 Puerta-Guardo H, Glasner DR, Espinosa DA. et al. Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep 2019; 26 (06) 1598.e8-1613.e8
  • 123 Kleiner DE, Brunt EM, Van Natta M. et al; Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41 (06) 1313-1321
  • 124 Calzadilla Bertot L, Adams LA. The natural course of non-alcoholic fatty liver disease. Int J Mol Sci 2016; 17 (05) E774
  • 125 Jahn D, Rau M, Wohlfahrt J, Hermanns HM, Geier A. Non-alcoholic steatohepatitis: from pathophysiology to novel therapies. Dig Dis 2016; 34 (04) 356-363
  • 126 Velayudham A, Dolganiuc A, Ellis M. et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology 2009; 49 (03) 989-997
  • 127 Van Herck MA, Vonghia L, Francque SM. Animal models of nonalcoholic fatty liver disease-a starter's guide. Nutrients 2017; 9 (10) E1072
  • 128 Ibrahim SH, Hirsova P, Malhi H, Gores GJ. Animal models of nonalcoholic steatohepatitis: eat, delete, and inflame. Dig Dis Sci 2016; 61 (05) 1325-1336
  • 129 Wanninger J, Neumeier M, Hellerbrand C. et al. Lipid accumulation impairs adiponectin-mediated induction of activin A by increasing TGFbeta in primary human hepatocytes. Biochim Biophys Acta 2011; 1811 (10) 626-633
  • 130 Sharma S, Mells JE, Fu PP, Saxena NK, Anania FA. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS One 2011; 6 (09) e25269
  • 131 Leclercq IA, Da Silva Morais A, Schroyen B, Van Hul N, Geerts A. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol 2007; 47 (01) 142-156
  • 132 Davidson MD, Ballinger KR, Khetani SR. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes. Sci Rep 2016; 6: 28178
  • 133 Kozyra M, Johansson I, Nordling Å, Ullah S, Lauschke VM, Ingelman-Sundberg M. Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci Rep 2018; 8 (01) 14297
  • 134 Spruss A, Bergheim I. Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J Nutr Biochem 2009; 20 (09) 657-662
  • 135 Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol 2017; 8: 1159
  • 136 Jegatheesan P, De Bandt JP. Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients 2017; 9 (03) E230
  • 137 Kostrzewski T, Cornforth T, Snow SA. et al. Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease. World J Gastroenterol 2017; 23 (02) 204-215
  • 138 Parafati M, Kirby RJ, Khorasanizadeh S, Rastinejad F, Malany S. A nonalcoholic fatty liver disease model in human induced pluripotent stem cell-derived hepatocytes, created by endoplasmic reticulum stress-induced steatosis. Dis Model Mech 2018; 11 (09) dmm033530
  • 139 Koo SH. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 2013; 19 (03) 210-215
  • 140 Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 2008; 88 (01) 125-172
  • 141 Puche JE, Lee YA, Jiao J. et al. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice. Hepatology 2013; 57 (01) 339-350
  • 142 Hardwick RN, Fisher CD, Canet MJ, Scheffer GL, Cherrington NJ. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab Dispos 2011; 39 (12) 2395-2402
  • 143 Merrell MD, Cherrington NJ. Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab Rev 2011; 43 (03) 317-334
  • 144 Cha JY, Kim DH, Chun KH. The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Lab Anim Res 2018; 34 (04) 133-139
  • 145 Suurmond CE, Lasli S, van den Dolder FW. et al. In vitro human liver model of nonalcoholic steatohepatitis by coculturing hepatocytes, endothelial cells, and Kupffer cells. Adv Healthc Mater 2019; 8 (24) e1901379
  • 146 Kostrzewski T, Maraver P, Ouro-Gnao L. et al. A microphysiological system for studying nonalcoholic steatohepatitis. Hepatol Commun 2019; 4 (01) 77-91
  • 147 Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases. J Hepatol 2013; 59 (01) 160-168
  • 148 Stickel F, Moreno C, Hampe J, Morgan MY. The genetics of alcohol dependence and alcohol-related liver disease. J Hepatol 2017; 66 (01) 195-211
  • 149 Speijer D, Manjeri GR, Szklarczyk R. How to deal with oxygen radicals stemming from mitochondrial fatty acid oxidation. Philos Trans R Soc Lond B Biol Sci 2014; 369 (1646): 20130446
  • 150 Hijona E, Hijona L, Arenas JI, Bujanda L. Inflammatory mediators of hepatic steatosis. Mediators Inflamm 2010; 2010: 837419
  • 151 Seitz HK, Stickel F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem 2006; 387 (04) 349-360
  • 152 Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70 (02) 249-259
  • 153 Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res 2015; 39 (05) 763-775
  • 154 Jeong WI, Gao B. Innate immunity and alcoholic liver fibrosis. J Gastroenterol Hepatol 2008; 23 (Suppl. 01) S112-S118
  • 155 Bird GL, Sheron N, Goka AK, Alexander GJ, Williams RS. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann Intern Med 1990; 112 (12) 917-920
  • 156 Lawler Jr JF, Yin M, Diehl AM, Roberts E, Chatterjee S. Tumor necrosis factor-alpha stimulates the maturation of sterol regulatory element binding protein-1 in human hepatocytes through the action of neutral sphingomyelinase. J Biol Chem 1998; 273 (09) 5053-5059
  • 157 Bucher S, Tête A, Podechard N. et al. Co-exposure to benzo[a]pyrene and ethanol induces a pathological progression of liver steatosis in vitro and in vivo. Sci Rep 2018; 8 (01) 5963
  • 158 Mahli A, Dostert K, Weiss T, Thasler W, Gäbele E, Hellerbrand C. A novel in vitro model of alcohol-induced hepatic fibrogenesis. Z Gastroenterol 2011;49(01):
  • 159 Karim S, Liaskou E, Hadley S. et al. An in vitro model of human acute ethanol exposure that incorporates CXCR3- and CXCR4-dependent recruitment of immune cells. Toxicol Sci 2013; 132 (01) 131-141
  • 160 Nawroth JC, Petropolis DB, Manatakis DV. et al. Modeling alcoholic liver disease in a human Liver-Chip. bioRxiv 2020; DOI: 10.1101/2020.07.14.203166.
  • 161 Tian L, Prasad N, Jang Y-Y. In vitro modeling of alcohol-induced liver injury using human-induced pluripotent stem cells. Methods Mol Biol 2016; 1353: 271-283
  • 162 Wang S, Wang X, Tan Z. et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res 2019; 29 (12) 1009-1026
  • 163 Wang J, Huang H, Liu Y. et al. HBV genome and life cycle. In: Tang H. ed. Hepatitis B Virus Infection: Molecular Virology to Antiviral Drugs. Singapore: Springer Singapore; 2020: 17-37
  • 164 Megahed FAK, Zhou X, Sun P. The Interactions between HBV and the Innate Immunity of Hepatocytes. Viruses 2020; 12 (03) E285
  • 165 Romanò L, Paladini S, Galli C, Raimondo G, Pollicino T, Zanetti AR. Hepatitis B vaccination. Hum Vaccin Immunother 2015; 11 (01) 53-57
  • 166 Li F, Wang Z, Hu F, Su L. Cell culture models and animal models for HBV study. In: Tang H. ed. Hepatitis B Virus Infection: Molecular Virology to Antiviral Drugs. Singapore: Springer Singapore; 2020: 109-135
  • 167 Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and animal models for studying hepatitis B virus infection and drug development. Gastroenterology 2019; 156 (02) 338-354
  • 168 Witt-Kehati D, Bitton Alaluf M, Shlomai A. Advances and challenges in studying hepatitis B virus in vitro. Viruses 2016; 8 (01) E21
  • 169 Gripon P, Diot C, Thézé N. et al. Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol 1988; 62 (11) 4136-4143
  • 170 Rumin S, Gripon P, Le Seyec J, Corral-Debrinski M, Guguen-Guillouzo C. Long-term productive episomal hepatitis B virus replication in primary cultures of adult human hepatocytes infected in vitro. J Viral Hepat 1996; 3 (05) 227-238
  • 171 Xiang C, Du Y, Meng G. et al. Long-term functional maintenance of primary human hepatocytes in vitro. Science 2019; 364 (6438): 399-402
  • 172 Shlomai A, Schwartz RE, Ramanan V. et al. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci U S A 2014; 111 (33) 12193-12198
  • 173 Winer BY, Huang TS, Pludwinski E. et al. Long-term hepatitis B infection in a scalable hepatic co-culture system. Nat Commun 2017; 8 (01) 125
  • 174 Fu GB, Huang WJ, Zeng M. et al. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Res 2019; 29 (01) 8-22
  • 175 Xia Y, Carpentier A, Cheng X. et al. Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions. J Hepatol 2017; 66 (03) 494-503
  • 176 Thio CL. Hepatitis B and human immunodeficiency virus coinfection. Hepatology 2009; 49 (5, Suppl): S138-S145
  • 177 Platt L, French CE, McGowan CR. et al. Prevalence and burden of HBV co-infection among people living with HIV: a global systematic review and meta-analysis. J Viral Hepat 2020; 27 (03) 294-315
  • 178 Lada O, Gervais A, Branger M. et al. Quasispecies analysis and in vitro susceptibility of HBV strains isolated from HIV-HBV-coinfected patients with delayed response to tenofovir. Antivir Ther 2012; 17 (01) 61-70
  • 179 Pan W, Wu Z, Wu S, Guo D, Gong X, Po T. Human immunodeficiency virus coinfection with hepatitis B virus leads to a decrease in extracellular and intracellular hepatitis B antigen. AIDS Res Hum Retroviruses 2015; 31 (04) 461-469
  • 180 Singh KP, Zerbato JM, Zhao W. et al. Intrahepatic CXCL10 is strongly associated with liver fibrosis in HIV-Hepatitis B co-infection. PLoS Pathog 2020; 16 (09) e1008744
  • 181 Bengrine A, Brochot E, Louchet M, Herpe YE, Duverlie G. Modeling of HBV and HCV hepatitis with hepatocyte-like cells. Front Biosci (Schol Ed) 2016; 8: 97-105
  • 182 Gural N, Mancio-Silva L, He J, Bhatia SN. Engineered livers for infectious diseases. Cell Mol Gastroenterol Hepatol 2017; 5 (02) 131-144
  • 183 Mounir M, Ibrahim MK, Dawood RM, Barakat AB, El Awady MK. Establishment of serum derived infectivity coculture model for enhancement of hepatitis C virus replication in vitro. Hum Antibodies 2019; 27 (03) 185-191
  • 184 Akil A, Endsley M, Shanmugam S. et al. Fibrogenic gene expression in hepatic stellate cells induced by HCV and HIV replication in a three cell co-culture model system. Sci Rep 2019; 9 (01) 568
  • 185 Blackard JT, Kong L, Rouster SD. et al. CCR5 receptor antagonism inhibits hepatitis C virus (HCV) replication in vitro. PLoS One 2019; 14 (10) e0224523
  • 186 Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos 2003; 31 (08) 1035-1042
  • 187 Steinmann E, Pietschmann T. Cell culture systems for hepatitis C virus. Curr Top Microbiol Immunol 2013; 369: 17-48
  • 188 Fournier C, Sureau C, Coste J. et al. In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus. J Gen Virol 1998; 79 (Pt 10): 2367-2374
  • 189 Ploss A, Khetani SR, Jones CT. et al. Persistent hepatitis C virus infection in microscale primary human hepatocyte cultures. Proc Natl Acad Sci U S A 2010; 107 (07) 3141-3145
  • 190 Schwartz RE, Trehan K, Andrus L. et al. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012; 109 (07) 2544-2548
  • 191 Sa-Ngiamsuntorn K, Wongkajornsilp A, Phanthong P. et al. A robust model of natural hepatitis C infection using hepatocyte-like cells derived from human induced pluripotent stem cells as a long-term host. Virol J 2016; 13: 59
  • 192 Yoshida T, Takayama K, Kondoh M. et al. Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection. Biochem Biophys Res Commun 2011; 416 (1–2): 119-124
  • 193 Wu X, Robotham JM, Lee E. et al. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathog 2012; 8 (04) e1002617
  • 194 Aizaki H, Nagamori S, Matsuda M. et al. Production and release of infectious hepatitis C virus from human liver cell cultures in the three-dimensional radial-flow bioreactor. Virology 2003; 314 (01) 16-25
  • 195 Sainz Jr B, TenCate V, Uprichard SL. Three-dimensional Huh7 cell culture system for the study of hepatitis C virus infection. Virol J 2009; 6: 103
  • 196 Cho NJ, Elazar M, Xiong A. et al. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel. Biomed Mater 2009; 4 (01) 011001
  • 197 Aly HH, Shimotohno K, Hijikata M. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV. Biochem Biophys Res Commun 2009; 379 (02) 330-334
  • 198 Molina-Jimenez F, Benedicto I, Dao Thi VL. et al. Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology 2012; 425 (01) 31-39
  • 199 Tran NM, Dufresne M, Duverlie G. et al. An appropriate selection of a 3D alginate culture model for hepatic Huh-7 cell line encapsulation intended for viral studies. Tissue Eng Part A 2013; 19 (1-2): 103-113
  • 200 Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, Kamel IR, Ghasebeh MA, Pawlik TM. Hepatocellular carcinoma: from diagnosis to treatment. Surg Oncol 2016; 25 (02) 74-85
  • 201 Khan AS, Dageforde LA. Cholangiocarcinoma. Surg Clin North Am 2019; 99 (02) 315-335
  • 202 Gringeri E, Gambato M, Sapisochin G. et al. Cholangiocarcinoma as an indication for liver transplantation in the era of transplant oncology. J Clin Med 2020; 9 (05) E1353
  • 203 Balogh J, Victor III D, Asham EH. et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma 2016; 3: 41-53
  • 204 Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018; 391 (10127): 1301-1314
  • 205 Della Corte C, Colombo M. Surveillance for hepatocellular carcinoma. Semin Oncol 2012; 39 (04) 384-398
  • 206 Friemel J, Rechsteiner M, Frick L. et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res 2015; 21 (08) 1951-1961
  • 207 Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019; 16 (07) 411-428
  • 208 Nunes AS, Barros AS, Costa EC, Moreira AF, Correia IJ. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 2019; 116 (01) 206-226
  • 209 Bell CC, Dankers ACA, Lauschke VM. et al. Comparison of hepatic 2D sandwich cultures and 3D spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci 2018; 162 (02) 655-666
  • 210 Bell CC, Chouhan B, Andersson LC. et al. Functionality of primary hepatic non-parenchymal cells in a 3D spheroid model and contribution to acetaminophen hepatotoxicity. Arch Toxicol 2020; 94 (04) 1251-1263
  • 211 Jung HR, Kang HM, Ryu JW. et al. Cell spheroids with enhanced aggressiveness to mimic human liver cancer in vitro and in vivo. Sci Rep 2017; 7 (01) 10499
  • 212 Chiew GGY, Wei N, Sultania S, Lim S, Luo KQ. Bioengineered three-dimensional co-culture of cancer cells and endothelial cells: A model system for dual analysis of tumor growth and angiogenesis. Biotechnol Bioeng 2017; 114 (08) 1865-1877
  • 213 Wang S, Wang Y, Xun X. et al. Hedgehog signaling promotes sorafenib resistance in hepatocellular carcinoma patient-derived organoids. J Exp Clin Cancer Res 2020; 39 (01) 22
  • 214 Song Y, Kim JS, Kim SH. et al. Patient-derived multicellular tumor spheroids towards optimized treatment for patients with hepatocellular carcinoma. J Exp Clin Cancer Res 2018; 37 (01) 109
  • 215 Broutier L, Mastrogiovanni G, Verstegen MM. et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017; 23 (12) 1424-1435
  • 216 Sontheimer-Phelps A, Hassell BA, Ingber DE. Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 2019; 19 (02) 65-81
  • 217 Sleeboom JJF, Eslami Amirabadi H, Nair P, Sahlgren CM, den Toonder JMJ. Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches. Dis Model Mech 2018; 11 (03) dmm033100
  • 218 Trujillo-de Santiago G, Flores-Garza BG, Tavares-Negrete JA. et al. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. Materials (Basel) 2019; 12 (18) E2945
  • 219 Coughlin MF, Kamm RD. The Use of Microfluidic Platforms to Probe the Mechanism of Cancer Cell Extravasation. Adv Healthc Mater 2020; 9 (08) e1901410
  • 220 Wan S, Kim TH, Smith KJ. et al. New labyrinth microfluidic device detects circulating tumor cells expressing cancer stem cell marker and circulating tumor microemboli in hepatocellular carcinoma. Sci Rep 2019; 9 (01) 18575
  • 221 Sun N, Lee YT, Zhang RY. et al. Purification of HCC-specific extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. Nat Commun 2020; 11 (01) 4489
  • 222 Kimura Y, Ikeuchi M, Inoue Y, Ikuta K. 3D microdevices that perform sample purification and multiplex qRT-PCR for early cancer detection with confirmation of specific RNAs. Sci Rep 2018; 8 (01) 17480
  • 223 Ma D, Wang R, Chen S, Luo T, Chow YT, Sun D. Microfluidic platform for probing cancer cells migration property under periodic mechanical confinement. Biomicrofluidics 2018; 12 (02) 024118
  • 224 Chen Y, Sun W, Kang L. et al. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Analyst (Lond) 2019; 144 (14) 4233-4240
  • 225 Ananthakrishnan A, Gogineni V, Saeian K. Epidemiology of primary and secondary liver cancers. Semin Intervent Radiol 2006; 23 (01) 47-63
  • 226 Aleman J, Skardal A. A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnol Bioeng 2019; 116 (04) 936-944
  • 227 McAleer CW, Long CJ, Elbrecht D. et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci Transl Med 2019; 11 (497) eaav1386
  • 228 Tian H, Pang J, Qin K. et al. A novel tissue-based liver-kidney-on-a-chip can mimic liver tropism of extracellular vesicles derived from breast cancer cells. Biotechnol J 2020; 15 (02) e1900107
  • 229 Murray CJ, Vos T, Lozano R. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859): 2197-2223
  • 230 Murray CJ, Lopez AD. Measuring the global burden of disease. N Engl J Med 2013; 369 (05) 448-457
  • 231 Bhatia SN, Underhill GH, Zaret KS, Fox IJ. Cell and tissue engineering for liver disease. Sci Transl Med 2014; 6 (245) 245sr2
  • 232 Shan J, Schwartz RE, Ross NT. et al. Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nat Chem Biol 2013; 9 (08) 514-520
  • 233 Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv 2014; 32 (02) 504-513
  • 234 Komori J, Boone L, DeWard A, Hoppo T, Lagasse E. The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat Biotechnol 2012; 30 (10) 976-983
  • 235 Fontes P, Komori J, Lopez R, Marsh W, Lagasse E. Development of ectopic livers by hepatocyte transplantation into swine lymph nodes. Liver Transpl 2020; 26 (12) 1629-1643
  • 236 Lee HJ, Ahn J, Jung CR. et al. Optimization of 3D hydrogel microenvironment for enhanced hepatic functionality of primary human hepatocytes. Biotechnol Bioeng 2020; 117 (06) 1864-1876
  • 237 Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN. Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci U S A 2011; 108 (29) 11842-11847
  • 238 Browning MB, Cosgriff-Hernandez E. Development of a biostable replacement for PEGDA hydrogels. Biomacromolecules 2012; 13 (03) 779-786
  • 239 Chu XH, Shi XL, Feng ZQ, Gu ZZ, Ding YT. Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol Lett 2009; 31 (03) 347-352
  • 240 Grant R, Hay D, Callanan A. From scaffold to structure: the synthetic production of cell derived extracellular matrix for liver tissue engineering. Biomed Phys Eng Expr 2018; 4 (06) 065015
  • 241 Croisier F, Jerome C. Chitosan-based biomaterials for tissue engineering. Eur Polym J 2013; 49 (04) 780-792
  • 242 Meinel L, Hofmann S, Karageorgiou V. et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005; 26 (02) 147-155
  • 243 Kukla DA, Stoppel WL, Kaplan DL, Khetani SR. Assessing the compatibility of primary human hepatocyte culture within porous silk sponges. RSC Advances 2020; 10 (62) 37662-37674
  • 244 Soto-Gutierrez A, Zhang L, Medberry C. et al. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 2011; 17 (06) 677-686
  • 245 Faulk DM, Wildemann JD, Badylak SF. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J Clin Exp Hepatol 2015; 5 (01) 69-80
  • 246 Jiang WC, Cheng YH, Yen MH, Chang Y, Yang VW, Lee OK. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials 2014; 35 (11) 3607-3617
  • 247 Lang R, Stern MM, Smith L. et al. Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 2011; 32 (29) 7042-7052
  • 248 Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 2012; 33 (06) 1771-1781
  • 249 Liu Tsang V, Chen AA, Cho LM. et al. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 2007; 21 (03) 790-801
  • 250 Albrecht DR, Underhill GH, Mendelson A, Bhatia SN. Multiphase electropatterning of cells and biomaterials. Lab Chip 2007; 7 (06) 702-709
  • 251 Chaturvedi RR, Stevens KR, Solorzano RD. et al. Patterning vascular networks in vivo for tissue engineering applications. Tissue Eng Part C Methods 2015; 21 (05) 509-517
  • 252 Stevens KR, Scull MA, Ramanan V. et al. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci Transl Med 2017; 9 (399) eaah5505
  • 253 You J, Shin D-S, Patel D, Gao Y, Revzin A. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes. Adv Healthc Mater 2014; 3 (01) 126-132
  • 254 Seale N, Ramaswamy S, Shih YR, Verma I, Varghese S. Macroporous dual-compartment hydrogels for minimally invasive transplantation of primary human hepatocytes. Transplantation 2018; 102 (09) e373-e381
  • 255 Hosseini V, Maroufi NF, Saghati S. et al. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17 (01) 383
  • 256 Rimington RP, Capel AJ, Player DJ, Bibb RJ, Christie SDR, Lewis MP. Feasibility and biocompatibility of 3D-printed photopolymerized and laser sintered polymers for neuronal, myogenic, and hepatic cell types. Macromol Biosci 2018; 18 (07) e1800113
  • 257 Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater 2018; 69: 63-70
  • 258 Skardal A, Devarasetty M, Kang HW. et al. Bioprinting cellularized constructs using a tissue-specific hydrogel bioink. J Vis Exp 2016; (110) e53606
  • 259 Mazzocchi A, Devarasetty M, Huntwork R, Soker S, Skardal A. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication 2018; 11 (01) 015003
  • 260 Arai K, Yoshida T, Okabe M. et al. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter. J Biomed Mater Res A 2017; 105 (06) 1583-1592
  • 261 Kim Y, Kang K, Jeong J. et al. Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure. Ann Surg Treat Res 2017; 92 (02) 67-72
  • 262 Kim Y, Kang K, Yoon S. et al. Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures. Organogenesis 2018; 14 (01) 1-12
  • 263 Gori M, Giannitelli SM, Torre M. et al. Biofabrication of hepatic constructs by 3D bioprinting of a cell-laden thermogel: an effective tool to assess drug-induced hepatotoxic response. Adv Healthc Mater 2020; 9 (21) e2001163
  • 264 Carter D, Presnell S, David B, Chen A. Modeling NAFLD using 3D bioprinted human liver tissue. J Hepatol 2018; 68: S357
  • 265 Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol 2011; 21 (12) 745-754