CC BY-NC-ND 4.0 · Semin Liver Dis 2021; 41(04): 495-506
DOI: 10.1055/s-0041-1732319
Review Article

Clinical Application and Progress of Fecal Microbiota Transplantation in Liver Diseases: A Review

Xinpei Gu
1   Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
,
Qin Lu
2   Department of Prescription Science, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
,
Chengcheng Zhang
3   Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
,
Zhewei Tang
3   Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
,
Liuxi Chu
4   Institute of Child Development and Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
› Author Affiliations
Funding National Natural Science Foundation of China (81904129), the College Student Innovation Funds Project for the Hebei University of Chinese Medicine (31800952, 202014432203), the Fundamental Research Funds for the Southeast University (3218006405, 2242019s10024) sponsored this study.

Abstract

The human gut harbors a dense and highly diverse microbiota of approximately 1,000 bacterial species. The interaction between the host and gut bacteria strongly influences human health. Numerous evidence suggest that intestinal flora imbalance is closely associated with the development and treatment of liver diseases, including acute liver injury and chronic liver diseases (cirrhosis, autoimmune liver disease, and fatty liver). Therefore, regulating the gut microbiota is expected to be a new method for the adjuvant treatment of liver diseases. Fecal microbiota transplantation (FMT) is defined as the transplantation of gut microbiota from healthy donors to sick patients via the upper or lower gastrointestinal route to restore the normal intestinal balance. In this study, we briefly review the current research on the gut microbiota and its link to liver diseases and then summarize the evidence to elucidate the clinical application and development of FMT in liver disease treatment.

Authors' Contributions

X.G. and L.C. designed the concept of the study. Q.L., C.Z., and X.G. wrote the first draft of the manuscript. L.C. and Z.T. edited the subsequent versions of the manuscript.




Publication History

Article published online:
14 July 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Medini D, Serruto D, Parkhill J. et al. Microbiology in the post-genomic era. Nat Rev Microbiol 2008; 6 (06) 419-430
  • 2 Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012; 148 (06) 1258-1270
  • 3 Palacios T, Vitetta L, Coulson S. et al. Targeting the intestinal microbiota to prevent type 2 diabetes and enhance the effect of metformin on glycaemia: a randomised controlled pilot study. Nutrients 2020; 12 (07) 12
  • 4 van Wietmarschen HA, Busch M, van Oostveen A, Pot G, Jong MC. Probiotics use for antibiotic-associated diarrhea: a pragmatic participatory evaluation in nursing homes. BMC Gastroenterol 2020; 20 (01) 151
  • 5 Bakken JS, Borody T, Brandt LJ. et al; Fecal Microbiota Transplantation Workgroup. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 2011; 9 (12) 1044-1049
  • 6 Betrapally NS, Gillevet PM, Bajaj JS. Gut microbiome and liver disease. Transl Res 2017; 179: 49-59
  • 7 Hawkins KG, Casolaro C, Brown JA, Edwards DA, Wikswo JP. The microbiome and the gut-liver-brain axis for central nervous system clinical pharmacology: challenges in specifying and integrating in vitro and in silico models. Clin Pharmacol Ther 2020; 108 (05) 929-948
  • 8 Bajaj JS, Kassam Z, Fagan A. et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology 2017; 66 (06) 1727-1738
  • 9 Mehta R, Kabrawala M, Nandwani S. et al. Preliminary experience with single fecal microbiota transplant for treatment of recurrent overt hepatic encephalopathy—a case series. Indian J Gastroenterol 2018; 37 (06) 559-562
  • 10 Le Roy T, Llopis M, Lepage P. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 2013; 62 (12) 1787-1794
  • 11 Gomez-Hurtado I, Gallego-Duran R, Zapater P. et al. Bacterial antigen translocation and age as BMI-independent contributing factors on systemic inflammation in NAFLD patients. Liver Int 2020; 40 (09) 2182-2193
  • 12 Frank DN, Zhu W, Sartor RB, Li E. Investigating the biological and clinical significance of human dysbioses. Trends Microbiol 2011; 19 (09) 427-434
  • 13 Boursier J, Diehl AM. Implication of gut microbiota in nonalcoholic fatty liver disease. PLoS Pathog 2015; 11 (01) e1004559
  • 14 Llopis M, Cassard AM, Wrzosek L. et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016; 65 (05) 830-839
  • 15 Furukawa M, Moriya K, Nakayama J. et al. Gut dysbiosis associated with clinical prognosis of patients with primary biliary cholangitis. Hepatol Res 2020; 50 (07) 840-852
  • 16 Wu G, Win S, Than TA, Chen P, Kaplowitz N. Gut microbiota and liver injury (I)-acute liver injury. Adv Exp Med Biol 2020; 1238: 23-37
  • 17 Wang Y, Pan CQ, Xing H. Advances in gut microbiota of viral hepatitis cirrhosis. BioMed Res Int 2019; 2019: 9726786
  • 18 Alonso C, Fernández-Ramos D, Varela-Rey M. et al. Metabolomic identification of subtypes of nonalcoholic steatohepatitis. Gastroenterology 2017; 152 (06) 1449-1461.e7
  • 19 Kaikkonen JE, Würtz P, Suomela E. et al. Metabolic profiling of fatty liver in young and middle-aged adults: cross-sectional and prospective analyses of the Young Finns Study. Hepatology 2017; 65 (02) 491-500
  • 20 Loomba R, Seguritan V, Li W. et al. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 2017; 25 (05) 1054-1062.e5
  • 21 Boursier J, Mueller O, Barret M. et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016; 63 (03) 764-775
  • 22 Oh TG, Kim SM, Caussy C. et al. A universal gut-microbiome-derived signature predicts cirrhosis. Cell Metab 2020; 32 (05) 878-888.e6
  • 23 Oh TG, Kim SM, Atkins AR. et al. Proton pump inhibitor use status does not modify the microbiome signature for cirrhosis. Cell Metab 2021; 33 (03) 457
  • 24 Aron-Wisnewsky J, Vigliotti C, Witjes J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol 2020; 17 (05) 279-297
  • 25 Adams LA, Wang Z, Liddle C. et al. Bile acids associate with specific gut microbiota, low-level alcohol consumption and liver fibrosis in patients with non-alcoholic fatty liver disease. Liver Int 2020; 40 (06) 1356-1365
  • 26 Ghoshal UC, Goel A, Quigley EMM. Gut microbiota abnormalities, small intestinal bacterial overgrowth, and non-alcoholic fatty liver disease: an emerging paradigm. Indian J Gastroenterol 2020; 39 (01) 9-21
  • 27 Guohong-Liu, Qingxi-Zhao, Hongyun-Wei. Characteristics of intestinal bacteria with fatty liver diseases and cirrhosis. Ann Hepatol 2019; 18 (06) 796-803
  • 28 Shah A, Macdonald GA, Morrison M, Holtmann G. Targeting the gut microbiome as a treatment for primary sclerosing cholangitis: a conceptional framework. Am J Gastroenterol 2020; 115 (06) 814-822
  • 29 Buness JG, Ali AH, Tabibian JH, Buness CW, Cox KL, Lindor KD. Potential association of doxycycline with the onset of primary sclerosing cholangitis: a case series. Am J Ther 2019; 26 (04) e551-e557 DOI: 10.1097/MJT.0000000000001065.
  • 30 Liwinski T, Zenouzi R, John C. et al. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut 2020; 69 (04) 665-672
  • 31 Chen Z, Xie Y, Zhou F. et al. Featured gut microbiomes associated with the progression of chronic hepatitis B disease. Front Microbiol 2020; 11: 383
  • 32 Beraza N. Fibrosis and the intestinal microbiome; a focus on chronic liver disease. Curr Opin Pharmacol 2019; 49: 76-81
  • 33 Jia W, Rajani C, Kaddurah-Daouk R, Li H. Expert insights: the potential role of the gut microbiome-bile acid-brain axis in the development and progression of Alzheimer's disease and hepatic encephalopathy. Med Res Rev 2020; 40 (04) 1496-1507
  • 34 Liu R, Kang JD, Sartor RB. et al. Neuroinflammation in murine cirrhosis is dependent on the gut microbiome and is attenuated by fecal transplant. Hepatology 2020; 71 (02) 611-626
  • 35 Bajaj JS, Fagan A, White MB. et al. Specific gut and salivary microbiota patterns are linked with different cognitive testing strategies in minimal hepatic encephalopathy. Am J Gastroenterol 2019; 114 (07) 1080-1090
  • 36 Acharya C, Bajaj JS. Current management of hepatic encephalopathy. Am J Gastroenterol 2018; 113 (11) 1600-1612
  • 37 Bajaj JS, Ridlon JM, Hylemon PB. et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol 2012; 302 (01) G168-G175
  • 38 Lin RS, Lee FY, Lee SD. et al. Endotoxemia in patients with chronic liver diseases: relationship to severity of liver diseases, presence of esophageal varices, and hyperdynamic circulation. J Hepatol 1995; 22 (02) 165-172
  • 39 Wang R, Tang R, Li B, Ma X, Schnabl B, Tilg H. Gut microbiome, liver immunology, and liver diseases. Cell Mol Immunol 2021; 18 (01) 4-17
  • 40 Cesaro C, Tiso A, Del Prete A. et al. Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis 2011; 43 (06) 431-438
  • 41 Mu J, Tan F, Zhou X, Zhao X. Lactobacillus fermentum CQPC06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice. Food Funct 2020; 11 (10) 8707-8723
  • 42 Acharya C, Bajaj JS. Altered microbiome in patients with cirrhosis and complications. Clin Gastroenterol Hepatol 2019; 17 (02) 307-321
  • 43 Lee NY, Suk KT. The role of the gut microbiome in liver cirrhosis treatment. Int J Mol Sci 2020; 22 (01) 16
  • 44 Kang DJ, Betrapally NS, Ghosh SA. et al. Gut microbiota drive the development of neuroinflammatory response in cirrhosis in mice. Hepatology 2016; 64 (04) 1232-1248
  • 45 Caussy C, Hsu C, Lo M-T. et al; Genetics of NAFLD in Twins Consortium. Link between gut-microbiome derived metabolite and shared gene-effects with hepatic steatosis and fibrosis in NAFLD. Hepatology 2018; 68 (03) 918-932
  • 46 Trapecar M, Communal C, Velazquez J. et al. Gut-liver physiomimetics reveal paradoxical modulation of IBD-related inflammation by short-chain fatty acids. Cell Syst 2020; 10 (03) 223-239.e9
  • 47 Saeedi BJ, Liu KH, Owens JA. et al. Gut-resident lactobacilli activate hepatic Nrf2 and protect against oxidative liver injury. Cell Metab 2020; 31 (05) 956-968.e5
  • 48 Woodhouse CA, Patel VC, Goldenberg S. et al. PROFIT, a PROspective, randomised placebo controlled feasibility trial of Faecal mIcrobiota Transplantation in cirrhosis: study protocol for a single-blinded trial. BMJ Open 2019; 9 (02) e023518
  • 49 Bajaj JS, Kakiyama G, Savidge T. et al. Antibiotic-associated disruption of microbiota composition and function in cirrhosis is restored by fecal transplant. Hepatology 2018; 68 (04) 1549-1558
  • 50 Zhang F, Luo W, Shi Y, Fan Z, Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation?. Am J Gastroenterol 2012; 107 (11) 1755 , author reply 1755–1756
  • 51 Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958; 44 (05) 854-859
  • 52 Schwan A, Sjölin S, Trottestam U, Aronsson B. Relapsing clostridium difficile enterocolitis cured by rectal infusion of homologous faeces. Lancet 1983; 2 (8354): 845
  • 53 Kelly CR, Kahn S, Kashyap P. et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology 2015; 149 (01) 223-237
  • 54 Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 2014; 312 (17) 1772-1778
  • 55 Gustafsson A, Berstad A, Lund-Tønnesen S, Midtvedt T, Norin E. The effect of faecal enema on five microflora-associated characteristics in patients with antibiotic-associated diarrhoea. Scand J Gastroenterol 1999; 34 (06) 580-586
  • 56 Persky SE, Brandt LJ. Treatment of recurrent Clostridium difficile-associated diarrhea by administration of donated stool directly through a colonoscope. Am J Gastroenterol 2000; 95 (11) 3283-3285
  • 57 Yin G, Li JF, Sun YF. et al. [Fecal microbiota transplantation as a novel therapy for severe psoriasis]. Zhonghua Nei Ke Za Zhi 2019; 58 (10) 782-785
  • 58 Liu J, Miyake H, Zhu H. et al. Fecal microbiota transplantation by enema reduces intestinal injury in experimental necrotizing enterocolitis. J Pediatr Surg 2020; 55 (06) 1094-1098
  • 59 Cheng Y-W, Alhaffar D, Saha S. et al. Fecal microbiota transplantation is safe and effective in patients with Clostridioides difficile infection and cirrhosis. Clin Gastroenterol Hepatol 2020; 18 (08) 1874-1881 DOI: 10.1016/j.cgh.2020.06.051.
  • 60 Craven L, Rahman A, Nair Parvathy S. et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am J Gastroenterol 2020; 115 (07) 1055-1065
  • 61 Kao D, Roach B, Park H. et al. Fecal microbiota transplantation in the management of hepatic encephalopathy. Hepatology 2016; 63 (01) 339-340
  • 62 Meighani A, Alimirah M, Ramesh M, Salgia R. Fecal microbiota transplantation for Clostridioides difficile infection in patients with chronic liver disease. Int J Hepatol 2020; 2020: 1874570
  • 63 Philips CA, Phadke N, Ganesan K, Augustine P. Healthy donor faecal transplant for corticosteroid non-responsive severe alcoholic hepatitis. BMJ Case Rep 2017; 2017: bcr-2017–222310
  • 64 Ren YD, Ye ZS, Yang LZ. et al. Fecal microbiota transplantation induces hepatitis B virus e-antigen (HBeAg) clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology 2017; 65 (05) 1765-1768
  • 65 Surawicz CM, Brandt LJ, Binion DG. et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 2013; 108 (04) 478-498 , quiz 499
  • 66 Vaughn BP, Rank KM, Khoruts A. Fecal microbiota transplantation: current status in treatment of GI and liver disease. Clin Gastroenterol Hepatol 2019; 17 (02) 353-361
  • 67 Vendrik KEW, Ooijevaar RE, de Jong PRC. et al. Fecal microbiota transplantation in neurological disorders. Front Cell Infect Microbiol 2020; 10: 98
  • 68 Gerussi A, Lucà M, Cristoferi L. et al. New therapeutic targets in autoimmune cholangiopathies. Front Med (Lausanne) 2020; 7: 117
  • 69 Mahajan R, Midha V, Singh A. et al. Incidental benefits after fecal microbiota transplant for ulcerative colitis. Intest Res 2020; 18 (03) 337-340
  • 70 Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol 2014; 48 (08) 693-702
  • 71 DeFilipp Z, Bloom PP, Torres Soto M. et al. Drug-Resistant E. coli bacteremia transmitted by fecal microbiota transplant. N Engl J Med 2019; 381 (21) 2043-2050
  • 72 Moayyedi P, Surette MG, Kim PT. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 2015; 149 (01) 102-109.e6
  • 73 Yu EW, Gao L, Stastka P. et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med 2020; 17 (03) e1003051
  • 74 Dailey FE, Turse EP, Daglilar E, Tahan V. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr Opin Pharmacol 2019; 49: 29-33
  • 75 Bajaj JS, Salzman NH, Acharya C. et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial. Hepatology 2019; 70 (05) 1690-1703
  • 76 Wang WW, Zhang Y, Huang XB, You N, Zheng L, Li J. Fecal microbiota transplantation prevents hepatic encephalopathy in rats with carbon tetrachloride-induced acute hepatic dysfunction. World J Gastroenterol 2017; 23 (38) 6983-6994
  • 77 Lachar J, Bajaj JS. Changes in the microbiome in cirrhosis and relationship to complications: hepatic encephalopathy, spontaneous bacterial peritonitis, and sepsis. Semin Liver Dis 2016; 36 (04) 327-330
  • 78 Santiago A, Pozuelo M, Poca M. et al. Alteration of the serum microbiome composition in cirrhotic patients with ascites. Sci Rep 2016; 6: 25001
  • 79 Tabibian JH, O'Hara SP, Trussoni CE. et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology 2016; 63 (01) 185-196
  • 80 Bajaj JS, Hays RA. Manipulation of the gut-liver axis using microbiome restoration therapy in primary sclerosing cholangitis. Am J Gastroenterol 2019; 114 (07) 1027-1029
  • 81 Philips CA, Augustine P, Phadke N. Healthy donor fecal microbiota transplantation for recurrent bacterial cholangitis in primary sclerosing cholangitis—a single case report. J Clin Transl Hepatol 2018; 6 (04) 438-441
  • 82 Allegretti JR, Kassam Z, Carrellas M. et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial. Am J Gastroenterol 2019; 114 (07) 1071-1079
  • 83 Philips CA, Pande A, Shasthry SM. et al. healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study. Clin Gastroenterol Hepatol 2017; 15 (04) 600-602
  • 84 Philips CA, Phadke N, Ganesan K, Ranade S, Augustine P. Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for severe alcoholic hepatitis. Indian J Gastroenterol 2018; 37 (03) 215-225
  • 85 Jiang L, Lang SJ, Duan Y. et al. Intestinal virome in patients with alcoholic hepatitis. Hepatology 2020; 72 (06) 2182-2196
  • 86 Lang S, Duan Y, Liu J. et al. Intestinal fungal dysbiosis and systemic immune response to fungi in patients with alcoholic hepatitis. Hepatology 2020; 71 (02) 522-538
  • 87 Famouri F, Shariat Z, Hashemipour M, Keikha M, Kelishadi R. Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr 2017; 64 (03) 413-417
  • 88 Zhou D, Pan Q, Shen F. et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 2017; 7 (01) 1529
  • 89 Ferrere G, Wrzosek L, Cailleux F. et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol 2017; 66 (04) 806-815
  • 90 Zhuge A, Li B, Yuan Y. et al. Lactobacillus salivarius LI01 encapsulated in alginate-pectin microgels ameliorates D-galactosamine-induced acute liver injury in rats. Appl Microbiol Biotechnol 2020; 104 (17) 7437-7455
  • 91 Chauhan A, Kumar R, Sharma S. et al. Fecal microbiota transplantation in hepatitis B e antigen-positive chronic hepatitis B patients: a pilot study. Dig Dis Sci 2021; 66 (03) 873-880
  • 92 Ronis MJ, Mercer KE, Shankar K. et al. Potential role of gut microbiota, the proto-oncogene PIKE (Agap2) and cytochrome P450 CYP2W1 in promotion of liver cancer by alcoholic and nonalcoholic fatty liver disease and protection by dietary soy protein. Chem Biol Interact 2020; 325: 109131
  • 93 Behzadi E, Mahmoodzadeh Hosseini H, Imani Fooladi AA. The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells. Microb Pathog 2017; 110: 1-6
  • 94 Chu L, Huang Y, Xu Y. et al. An LC-APCI+-MS/MS-based method for determining the concentration of neurosteroids in the brain of male mice with different gut microbiota. Journal of Neuroscience Mehods 2021; 360: 109268
  • 95 Chu LX, Li N, Deng J. et al. LC-APCI+-MS/MS method for the analysis of ten hormones and two endocannabinoids in plasma and hair from the mice with different gut microbiota. J Pharm Biomed Anal 2020; 185: 113223