Semin Thromb Hemost 2022; 48(02): 174-187
DOI: 10.1055/s-0041-1732467
Review Article

The Role of Fibrin(ogen) in Wound Healing and Infection Control

Katherine J. Kearney
1   Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
,
Robert A.S. Ariëns
1   Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
2   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Fraser L. Macrae
1   Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
› Author Affiliations
Funding The R.A.S.A. laboratory is supported by grants from the BHF (RG/18/11/34036) and Wellcome Trust (204951/B/16/Z). F.L.M. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (215861/Z/19/Z).

Abstract

Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.



Publication History

Article published online:
24 August 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Doolittle RF. Fibrinogen and fibrin. Annu Rev Biochem 1984; 53: 195-229
  • 2 Broughton II G, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg 2006; 117 (Suppl. 07) 12S-34S
  • 3 Sinno H, Prakash S. Complements and the wound healing cascade: an updated review. Plast Surg Int 2013; 2013: 146764
  • 4 Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair: positive actions and negative reactions. Adv Wound Care (New Rochelle) 2013; 2 (07) 379-388
  • 5 Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 2011; 13: e23
  • 6 Rappolee D, Werb Z. Macrophage-derived growth factors. In: Russel SW, Gordon S. eds. Macrophage Biology and Activation. Cham: Springer; 1992: 87-140
  • 7 Rocco M, Weisel JW. Exposed: the elusive αC regions in fibrinogen, fibrin protofibrils and fibers. J Thromb Haemost 2015; 13 (04) 567-569
  • 8 Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341 (10) 738-746
  • 9 Welch MP, Odland GF, Clark RA. Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol 1990; 110 (01) 133-145
  • 10 Clark RA, Nielsen LD, Welch MP, McPherson JM. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-beta. J Cell Sci 1995; 108 (Pt 3): 1251-1261
  • 11 Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about?. J Cardiovasc Pharmacol 2011; 57 (04) 376-379
  • 12 Hoffman M. Animal models of bleeding and tissue repair. Haemophilia 2008; 14 (Suppl. 03) 62-67
  • 13 Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 1982; 79 (05) 264-269
  • 14 Ciano PS, Colvin RB, Dvorak AM, McDonagh J, Dvorak HF. Macrophage migration in fibrin gel matrices. Lab Invest 1986; 54 (01) 62-70
  • 15 Lanir N, Ciano PS, Van de Water L, McDonagh J, Dvorak AM, Dvorak HF. Macrophage migration in fibrin gel matrices. II. Effects of clotting factor XIII, fibronectin, and glycosaminoglycan content on cell migration. J Immunol 1988; 140 (07) 2340-2349
  • 16 Brown LF, Lanir N, McDonagh J, Tognazzi K, Dvorak AM, Dvorak HF. Fibroblast migration in fibrin gel matrices. Am J Pathol 1993; 142 (01) 273-283
  • 17 Clark RA, Tonnesen MG, Gailit J, Cheresh DA. Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am J Pathol 1996; 148 (05) 1407-1421
  • 18 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69 (01) 11-25
  • 19 Cheresh DA, Berliner SA, Vicente V, Ruggeri ZM. Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells. Cell 1989; 58 (05) 945-953
  • 20 Newman D, Clark RAF, Mosesson MW, Tonnesen MG. Human dermal microvascular endothelial cells use alpha 5 beta 1, as well as alpha v beta 3, to interact with the major fibrinogen breakdown product E1. J Invest Dermatol 1996; 106 (04) 105-105
  • 21 Gailit J, Clarke C, Newman D, Tonnesen MG, Mosesson MW, Clark RAF. Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3. Exp Cell Res 1997; 232 (01) 118-126
  • 22 Martinez J, Ferber A, Bach TL, Yaen CH. Interaction of fibrin with VE-cadherin. Ann N Y Acad Sci 2001; 936: 386-405
  • 23 Feng X, Clark RAF, Galanakis D, Tonnesen MG. Fibrin and collagen differentially regulate human dermal microvascular endothelial cell integrins: stabilization of alphav/beta3 mRNA by fibrin1. J Invest Dermatol 1999; 113 (06) 913-919
  • 24 Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJ, Degen JL. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 1996; 87 (04) 709-719
  • 25 Richardson DL, Pepper DS, Kay AB. Chemotaxis for human monocytes by fibrinogen-derived peptides. Br J Haematol 1976; 32 (04) 507-513
  • 26 Gross TJ, Leavell KJ, Peterson MW. CD11b/CD18 mediates the neutrophil chemotactic activity of fibrin degradation product D domain. Thromb Haemost 1997; 77 (05) 894-900
  • 27 Postlethwaite AE, Kang AH. Collagen-and collagen peptide-induced chemotaxis of human blood monocytes. J Exp Med 1976; 143 (06) 1299-1307
  • 28 Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest 1980; 66 (04) 859-862
  • 29 Clark RAF, Wikner NE, Doherty DE, Norris DA. Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment. J Biol Chem 1988; 263 (24) 12115-12123
  • 30 Bar-Shavit R, Benezra M, Eldor A. et al. Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: nonenzymatic mode of action. Cell Regul 1990; 1 (06) 453-463
  • 31 Fernandez HN, Henson PM, Otani A, Hugli TE. Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vivo conditions. J Immunol 1978; 120 (01) 109-115
  • 32 Wahl SM, Hunt DA, Wakefield LM. et al. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A 1987; 84 (16) 5788-5792
  • 33 Blystone SD, Graham IL, Lindberg FP, Brown EJ. Integrin alpha v beta 3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor alpha 5 beta 1. J Cell Biol 1994; 127 (04) 1129-1137
  • 34 Altieri DC, Agbanyo FR, Plescia J, Ginsberg MH, Edgington TS, Plow EF. A unique recognition site mediates the interaction of fibrinogen with the leukocyte integrin Mac-1 (CD11b/CD18). J Biol Chem 1990; 265 (21) 12119-12122
  • 35 Trezzini C, Schüepp B, Maly FE, Jungi TW. Evidence that exposure to fibrinogen or to antibodies directed against Mac-1 (CD11b/CD18; CR3) modulates human monocyte effector functions. Br J Haematol 1991; 77 (01) 16-24
  • 36 Yakovlev S, Zhang L, Ugarova T, Medved L. Interaction of fibrin(ogen) with leukocyte receptor alpha M beta 2 (Mac-1): further characterization and identification of a novel binding region within the central domain of the fibrinogen gamma-module. Biochemistry 2005; 44 (02) 617-626
  • 37 Tonnesen MG, Anderson DC, Springer TA, Knedler A, Avdi N, Henson PM. Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest 1989; 83 (02) 637-646
  • 38 Loike JD, Sodeik B, Cao L. et al. CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci U S A 1991; 88 (03) 1044-1048
  • 39 Wojtecka-Lukasik E, Maśliński S. Fibronectin and fibrinogen degradation products stimulate PMN-leukocyte and mast cell degranulation. J Physiol Pharmacol 1992; 43 (02) 173-181
  • 40 Plow EF. The contribution of leukocyte proteases to fibrinolysis. Blut 1986; 53 (01) 1-9
  • 41 Machovich R, Himer A, Owen WG. Neutrophil proteases in plasminogen activation. Blood Coagul Fibrinolysis 1990; 1 (03) 273-277
  • 42 Adams SA, Kelly SL, Kirsch RE, Robson SC, Shephard EG. Role of neutrophil membrane proteases in fibrin degradation. Blood Coagul Fibrinolysis 1995; 6 (08) 693-702
  • 43 Hamaguchi M, Morishita Y, Takahashi I, Ogura M, Takamatsu J, Saito H. FDP D-dimer induces the secretion of interleukin-1, urokinase-type plasminogen activator, and plasminogen activator inhibitor-2 in a human promonocytic leukemia cell line. Blood 1991; 77 (01) 94-100
  • 44 Pastar I, Stojadinovic O, Yin NC. et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle) 2014; 3 (07) 445-464
  • 45 Odland G, Ross R. Human wound repair. I. Epidermal regeneration. J Cell Biol 1968; 39 (01) 135-151
  • 46 Clark RAF. Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol 1990; 94 (Suppl. 06) 128S-134S
  • 47 Larjava H, Salo T, Haapasalmi K, Kramer RH, Heino J. Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest 1993; 92 (03) 1425-1435
  • 48 Juhasz I, Murphy GF, Yan HC, Herlyn M, Albelda SM. Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol 1993; 143 (05) 1458-1469
  • 49 Kubo M, Van de Water L, Plantefaber LC. et al. Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J Invest Dermatol 2001; 117 (06) 1369-1381
  • 50 Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 1997; 137 (06) 1445-1457
  • 51 Grøndahl-Hansen J, Lund LR, Ralfkiaer E, Ottevanger V, Danø K. Urokinase- and tissue-type plasminogen activators in keratinocytes during wound reepithelialization in vivo. J Invest Dermatol 1988; 90 (06) 790-795
  • 52 Woodley DT, Kalebec T, Banes AJ, Link W, Prunieras M, Liotta L. Adult human keratinocytes migrating over nonviable dermal collagen produce collagenolytic enzymes that degrade type I and type IV collagen. J Invest Dermatol 1986; 86 (04) 418-423
  • 53 Mignatti P, Rifkin DB, Welgus HG, Parks WC. Proteinases and tissue remodeling. In: Clark RAF. ed. The Molecular and Cellular Biology of Wound Repair. Boston, MA: Springer US; 1988: 427-474
  • 54 Geer DJ, Andreadis ST. A novel role of fibrin in epidermal healing: plasminogen-mediated migration and selective detachment of differentiated keratinocytes. J Invest Dermatol 2003; 121 (05) 1210-1216
  • 55 Gray AJ, Bishop JE, Reeves JT, Laurent GJ. A alpha and B beta chains of fibrinogen stimulate proliferation of human fibroblasts. J Cell Sci 1993; 104 (Pt 2): 409-413
  • 56 Xu J, Clark RA. Extracellular matrix alters PDGF regulation of fibroblast integrins. J Cell Biol 1996; 132 (1-2): 239-249
  • 57 Lynch SE, Nixon JC, Colvin RB, Antoniades HN. Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci U S A 1987; 84 (21) 7696-7700
  • 58 Faler BJ, Macsata RA, Plummer D, Mishra L, Sidawy AN. Transforming growth factor-beta and wound healing. Perspect Vasc Surg Endovasc Ther 2006; 18 (01) 55-62
  • 59 Greiling D, Clark RA. Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J Cell Sci 1997; 110 (Pt 7): 861-870
  • 60 Sahni A, Odrljin T, Francis CW. Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem 1998; 273 (13) 7554-7559
  • 61 Gailit J, Clark RA. Studies in vitro on the role of alpha v and beta 1 integrins in the adhesion of human dermal fibroblasts to provisional matrix proteins fibronectin, vitronectin, and fibrinogen. J Invest Dermatol 1996; 106 (01) 102-108
  • 62 Farrell DH, al-Mondhiry HA. Human fibroblast adhesion to fibrinogen. Biochemistry 1997; 36 (05) 1123-1128
  • 63 Law JX, Chowdhury SR, Aminuddin BS, Ruszymah BHI. Role of plasma-derived fibrin on keratinocyte and fibroblast wound healing. Cell Tissue Bank 2017; 18 (04) 585-595
  • 64 Sporn LA, Bunce LA, Francis CW. Cell proliferation on fibrin: modulation by fibrinopeptide cleavage. Blood 1995; 86 (05) 1802-1810
  • 65 Cox S, Cole M, Tawil B. Behavior of human dermal fibroblasts in three-dimensional fibrin clots: dependence on fibrinogen and thrombin concentration. Tissue Eng 2004; 10 (5-6): 942-954
  • 66 Nandi S, Sproul EP, Nellenbach K. et al. Platelet-like particles dynamically stiffen fibrin matrices and improve wound healing outcomes. Biomater Sci 2019; 7 (02) 669-682
  • 67 Knox P, Crooks S, Scaife MC, Patel S. Role of plasminogen, plasmin, and plasminogen activators in the migration of fibroblasts into plasma clots. J Cell Physiol 1987; 132 (03) 501-508
  • 68 Fuchs PO, Calitz C, Pavlović N. et al. Fibrin fragment E potentiates TGF-β-induced myofibroblast activation and recruitment. Cell Signal 2020; 72: 109661
  • 69 Tuan TL, Song A, Chang S, Younai S, Nimni ME. In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp Cell Res 1996; 223 (01) 127-134
  • 70 Madri JA, Sankar S, Romanic AM. Angiogenesis. In: Clark RAF. ed. The Molecular and Cellular Biology of Wound Repair. New York: Plenum Press; 1996: 355-372
  • 71 Thiagarajan P, Rippon AJ, Farrell DH. Alternative adhesion sites in human fibrinogen for vascular endothelial cells. Biochemistry 1996; 35 (13) 4169-4175
  • 72 Sahni A, Francis CW. Stimulation of endothelial cell proliferation by FGF-2 in the presence of fibrinogen requires alphavbeta3. Blood 2004; 104 (12) 3635-3641
  • 73 Yokoyama K, Zhang XP, Medved L, Takada Y. Specific binding of integrin alpha v beta 3 to the fibrinogen gamma and alpha E chain C-terminal domains. Biochemistry 1999; 38 (18) 5872-5877
  • 74 Reynolds LE, Conti FJ, Lucas M. et al. Accelerated re-epithelialization in beta3-integrin-deficient- mice is associated with enhanced TGF-beta1 signaling. Nat Med 2005; 11 (02) 167-174
  • 75 Rybarczyk BJ, Lawrence SO, Simpson-Haidaris PJ. Matrix-fibrinogen enhances wound closure by increasing both cell proliferation and migration. Blood 2003; 102 (12) 4035-4043
  • 76 Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS. Alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 2003; 6 (02) 105-119
  • 77 Suehiro K, Gailit J, Plow EF. Fibrinogen is a ligand for integrin alpha5beta1 on endothelial cells. J Biol Chem 1997; 272 (08) 5360-5366
  • 78 Altieri DC, Duperray A, Plescia J, Thornton GB, Languino LR. Structural recognition of a novel fibrinogen gamma chain sequence (117-133) by intercellular adhesion molecule-1 mediates leukocyte-endothelium interaction. J Biol Chem 1995; 270 (02) 696-699
  • 79 Bach TL, Barsigian C, Chalupowicz DG. et al. VE-cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 1998; 238 (02) 324-334
  • 80 Feng X, Tonnesen MG, Mousa SA, Clark RA. Fibrin and collagen differentially but synergistically regulate sprout angiogenesis of human dermal microvascular endothelial cells in 3-dimensional matrix. Int J Cell Biol 2013; 2013: 231279
  • 81 Sahni A, Francis CW. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood 2000; 96 (12) 3772-3778
  • 82 Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci U S A 2013; 110 (12) 4563-4568
  • 83 Nehls V, Herrmann R. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res 1996; 51 (03) 347-364
  • 84 Belkin AM, Tsurupa G, Zemskov E, Veklich Y, Weisel JW, Medved L. Transglutaminase-mediated oligomerization of the fibrin(ogen) alpha C domains promotes integrin-dependent cell adhesion and signaling. Blood 2005; 105 (09) 3561-3568
  • 85 Bootle-Wilbraham CA, Tazzyman S, Marshall JM, Lewis CE. Fibrinogen E-fragment inhibits the migration and tubule formation of human dermal microvascular endothelial cells in vitro. Cancer Res 2000; 60 (17) 4719-4724
  • 86 Bootle-Wilbraham CA, Tazzyman S, Thompson WD, Stirk CM, Lewis CE. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro. Angiogenesis 2001; 4 (04) 269-275
  • 87 Brown NJ, Staton CA, Rodgers GR, Corke KP, Underwood JC, Lewis CE. Fibrinogen E fragment selectively disrupts the vasculature and inhibits the growth of tumours in a syngeneic murine model. Br J Cancer 2002; 86 (11) 1813-1816
  • 88 Staton CA, Brown NJ, Rodgers GR. et al. Alphastatin, a 24-amino acid fragment of human fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood 2004; 103 (02) 601-606
  • 89 Kinebuchi A, Ohtsuka T, Ishida S. et al. Leg ulcer presenting in a patient with congenital afibrinogenaemia. Eur J Dermatol 2002; 12 (01) 70-72
  • 90 Lak M, Keihani M, Elahi F, Peyvandi F, Mannucci PM. Bleeding and thrombosis in 55 patients with inherited afibrinogenaemia. Br J Haematol 1999; 107 (01) 204-206
  • 91 Rupec RA, Kind P, Ruzicka T. Cutaneous manifestations of congenital afibrinogenaemia. Br J Dermatol 1996; 134 (03) 548-550
  • 92 Drew AF, Liu H, Davidson JM, Daugherty CC, Degen JL. Wound-healing defects in mice lacking fibrinogen. Blood 2001; 97 (12) 3691-3698
  • 93 Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A. Smart materials as scaffolds for tissue engineering. J Cell Physiol 2005; 203 (03) 465-470
  • 94 Whelan D, Caplice NM, Clover AJ. Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 2014; 196: 1-8
  • 95 Miron RJ, Fujioka-Kobayashi M, Bishara M, Zhang Y, Hernandez M, Choukroun J. Platelet-rich fibrin and soft tissue wound healing: a systematic review. Tissue Eng Part B Rev 2017; 23 (01) 83-99
  • 96 Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129: 134-147
  • 97 Nellenbach K, Nandi S, Peeler C, Kyu A, Brown AC. Neonatal fibrin scaffolds promote enhanced cell adhesion, migration, and wound healing in vivo compared to adult fibrin scaffolds. Cell Mol Bioeng 2020; 13 (05) 393-404
  • 98 de Carvalho CKL, Fernandes BL, de Souza MA. Autologous matrix of platelet-rich fibrin in wound care settings: a systematic review of randomized clinical trials. J Funct Biomater 2020; 11 (02) E31
  • 99 Clark RA. Fibrin glue for wound repair: facts and fancy. Thromb Haemost 2003; 90 (06) 1003-1006
  • 100 Macrae FL, Duval C, Papareddy P. et al. A fibrin biofilm covers blood clots and protects from microbial invasion. J Clin Invest 2018; 128 (08) 3356-3368
  • 101 Dunn DL, Simmons RL. Fibrin in peritonitis. III. The mechanism of bacterial trapping by polymerizing fibrin. Surgery 1982; 92 (03) 513-519
  • 102 Kapral FA. Clumping of Staphylococcus aureus in the peritoneal cavity of mice. J Bacteriol 1966; 92 (04) 1188-1195
  • 103 Echtenacher B, Weigl K, Lehn N, Männel DN. Tumor necrosis factor-dependent adhesions as a major protective mechanism early in septic peritonitis in mice. Infect Immun 2001; 69 (06) 3550-3555
  • 104 Rotstein OD. Role of fibrin deposition in the pathogenesis of intraabdominal infection. Eur J Clin Microbiol Infect Dis 1992; 11 (11) 1064-1068
  • 105 Mullarky IK, Szaba FM, Berggren KN. et al. Infection-stimulated fibrin deposition controls hemorrhage and limits hepatic bacterial growth during listeriosis. Infect Immun 2005; 73 (07) 3888-3895
  • 106 Sun H, Wang X, Degen JL, Ginsburg D. Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood 2009; 113 (06) 1358-1364
  • 107 Sun H, Ringdahl U, Homeister JW. et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 2004; 305 (5688): 1283-1286
  • 108 Dickneite G, Herwald H, Korte W, Allanore Y, Denton CP, Matucci Cerinic M. Coagulation factor XIII: a multifunctional transglutaminase with clinical potential in a range of conditions. Thromb Haemost 2015; 113 (04) 686-697
  • 109 Loof TG, Mörgelin M, Johansson L. et al. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 2011; 118 (09) 2589-2598
  • 110 Deicke C, Chakrakodi B, Pils MC. et al. Local activation of coagulation factor XIII reduces systemic complications and improves the survival of mice after Streptococcus pyogenes M1 skin infection. Int J Med Microbiol 2016; 306 (07) 572-579
  • 111 Wang Z, Wilhelmsson C, Hyrsl P. et al. Pathogen entrapment by transglutaminase—a conserved early innate immune mechanism. PLoS Pathog 2010; 6 (02) e1000763
  • 112 Duperray A, Languino LR, Plescia J. et al. Molecular identification of a novel fibrinogen binding site on the first domain of ICAM-1 regulating leukocyte-endothelium bridging. J Biol Chem 1997; 272 (01) 435-441
  • 113 Sitrin RG, Pan PM, Srikanth S, Todd III RF. Fibrinogen activates NF-kappa B transcription factors in mononuclear phagocytes. J Immunol 1998; 161 (03) 1462-1470
  • 114 Rubel C, Fernández GC, Dran G, Bompadre MB, Isturiz MA, Palermo MS. Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol 2001; 166 (03) 2002-2010
  • 115 Forsyth CB, Solovjov DA, Ugarova TP, Plow EF. Integrin alpha(M)beta(2)-mediated cell migration to fibrinogen and its recognition peptides. J Exp Med 2001; 193 (10) 1123-1133
  • 116 Tuluc F, Garcia A, Bredetean O, Meshki J, Kunapuli SP. Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways. Am J Physiol Cell Physiol 2004; 287 (05) C1264-C1272
  • 117 Pillay J, Kamp VM, Pennings M. et al. Acute-phase concentrations of soluble fibrinogen inhibit neutrophil adhesion under flow conditions in vitro through interactions with ICAM-1 and MAC-1 (CD11b/CD18). J Thromb Haemost 2013; 11 (06) 1172-1182
  • 118 Yakovlev S, Gao Y, Cao C. et al. Interaction of fibrin with VE-cadherin and anti-inflammatory effect of fibrin-derived fragments. J Thromb Haemost 2011; 9 (09) 1847-1855
  • 119 Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost 2018; 2 (03) 549-557
  • 120 Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 2001; 167 (05) 2887-2894
  • 121 Rubel C, Gómez S, Fernández GC, Isturiz MA, Caamaño J, Palermo MS. Fibrinogen-CD11b/CD18 interaction activates the NF-kappa B pathway and delays apoptosis in human neutrophils. Eur J Immunol 2003; 33 (05) 1429-1438
  • 122 Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133 (06) 511-520
  • 123 Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76 (02) 301-314
  • 124 Flick MJ, Du X, Degen JL. Fibrin(ogen)-alpha M beta 2 interactions regulate leukocyte function and innate immunity in vivo. Exp Biol Med (Maywood) 2004; 229 (11) 1105-1110
  • 125 Ugarova TP, Solovjov DA, Zhang L. et al. Identification of a novel recognition sequence for integrin alphaM beta2 within the gamma-chain of fibrinogen. J Biol Chem 1998; 273 (35) 22519-22527
  • 126 Yakubenko VP, Solovjov DA, Zhang L, Yee VC, Plow EF, Ugarova TP. Identification of the binding site for fibrinogen recognition peptide gamma 383-395 within the alpha(M)I-domain of integrin alpha(M)beta2. J Biol Chem 2001; 276 (17) 13995-14003
  • 127 Ugarova TP, Lishko VK, Podolnikova NP. et al. Sequence gamma 377-395(P2), but not gamma 190-202(P1), is the binding site for the alpha MI-domain of integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2003; 42 (31) 9365-9373
  • 128 Lishko VK, Kudryk B, Yakubenko VP, Yee VC, Ugarova TP. Regulated unmasking of the cryptic binding site for integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2002; 41 (43) 12942-12951
  • 129 Flick MJ, Du X, Witte DP. et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor alphaMbeta2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 2004; 113 (11) 1596-1606
  • 130 Flick MJ, Du X, Prasad JM. et al. Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host survival in septicemia. Blood 2013; 121 (10) 1783-1794
  • 131 Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70 (12) 6524-6533
  • 132 Påhlman LI, Mörgelin M, Kasetty G, Olin AI, Schmidtchen A, Herwald H. Antimicrobial activity of fibrinogen and fibrinogen-derived peptides—a novel link between coagulation and innate immunity. Thromb Haemost 2013; 109 (05) 930-939
  • 133 Hudspeth AS. Radical surgical debridement in the treatment of advanced generalized bacterial peritonitis. Arch Surg 1975; 110 (10) 1233-1236
  • 134 Ahrenholz DH, Simmons RL. Fibrin in peritonitis. I. Beneficial and adverse effects of fibrin in experimental E. coli peritonitis. Surgery 1980; 88 (01) 41-47
  • 135 Bjerketorp J, Jacobsson K, Frykberg L. The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol Lett 2004; 234 (02) 309-314
  • 136 Kawabata S, Morita T, Iwanaga S, Igarashi H. Enzymatic properties of staphylothrombin, an active molecular complex formed between staphylocoagulase and human prothrombin. J Biochem 1985; 98 (06) 1603-1614
  • 137 Friedrich R, Panizzi P, Fuentes-Prior P. et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 2003; 425 (6957): 535-539
  • 138 Kroh HK, Panizzi P, Bock PE. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci U S A 2009; 106 (19) 7786-7791
  • 139 Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host-pathogen interactions. Adv Appl Microbiol 2016; 96: 1-41
  • 140 Guggenberger C, Wolz C, Morrissey JA, Heesemann J. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog 2012; 8 (01) e1002434
  • 141 Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 2010; 6 (08) e1001036
  • 142 Vanassche T, Verhaegen J, Peetermans WE. et al. Inhibition of staphylothrombin by dabigatran reduces Staphylococcus aureus virulence. J Thromb Haemost 2011; 9 (12) 2436-2446
  • 143 Panizzi P, Nahrendorf M, Figueiredo JL. et al. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 2011; 17 (09) 1142-1146
  • 144 Peetermans M, Liesenborghs L, Peerlinck K. et al; Staphylothrombin Investigators. Targeting coagulase activity in Staphylococcus aureus bacteraemia: a randomized controlled single-centre trial of staphylothrombin inhibition. Thromb Haemost 2018; 118 (05) 818-829
  • 145 Loof TG, Goldmann O, Naudin C. et al. Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. Microbiology (Reading) 2015; 161 (Pt 3): 621-627
  • 146 Prasad JM, Negrón O, Du X. et al. Host fibrinogen drives antimicrobial function in Staphylococcus aureus peritonitis through bacterial-mediated prothrombin activation. Proc Natl Acad Sci U S A 2021; 118 (01) e2009837118
  • 147 Prasad JM, Gorkun OV, Raghu H. et al. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense. Blood 2015; 126 (17) 2047-2058
  • 148 van der Poll T, Herwald H. The coagulation system and its function in early immune defense. Thromb Haemost 2014; 112 (04) 640-648
  • 149 Wang X, Lin X, Loy JA, Tang J, Zhang XC. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 1998; 281 (5383): 1662-1665
  • 150 Boxrud PD, Fay WP, Bock PE. Streptokinase binds to human plasmin with high affinity, perturbs the plasmin active site, and induces expression of a substrate recognition exosite for plasminogen. J Biol Chem 2000; 275 (19) 14579-14589
  • 151 Panizzi P, Boxrud PD, Verhamme IM, Bock PE. Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase.plasmin(ogen) catalytic complexes. J Biol Chem 2006; 281 (37) 26774-26778
  • 152 Wiman B. On the reaction of plasmin or plasmin-streptokinase complex with aprotinin or alpha 2-antiplasmin. Thromb Res 1980; 17 (1-2): 143-152
  • 153 Lijnen HR, Van Hoef B, De Cock F. et al. On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol Chem 1991; 266 (18) 11826-11832
  • 154 Grella DK, Castellino FJ. Activation of human plasminogen by staphylokinase. Direct evidence that preformed plasmin is necessary for activation to occur. Blood 1997; 89 (05) 1585-1589
  • 155 Collen D, Schlott B, Engelborghs Y. et al. On the mechanism of the activation of human plasminogen by recombinant staphylokinase. J Biol Chem 1993; 268 (11) 8284-8289
  • 156 Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 2004; 172 (02) 1169-1176
  • 157 Sodeinde OA, Subrahmanyam YVBK, Stark K, Quan T, Bao Y, Goguen JD. A surface protease and the invasive character of plague. Science 1992; 258 (5084): 1004-1007
  • 158 Kukkonen M, Lähteenmäki K, Suomalainen M. et al. Protein regions important for plasminogen activation and inactivation of alpha2-antiplasmin in the surface protease Pla of Yersinia pestis . Mol Microbiol 2001; 40 (05) 1097-1111
  • 159 Lathem WW, Price PA, Miller VL, Goldman WE. A plasminogen-activating protease specifically controls the development of primary pneumonic plague. Science 2007; 315 (5811): 509-513
  • 160 Berge A, Sjöbring U. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes . J Biol Chem 1993; 268 (34) 25417-25424
  • 161 Ben Nasr A, Wistedt A, Ringdahl U, Sjöbring U. Streptokinase activates plasminogen bound to human group C and G streptococci through M-like proteins. Eur J Biochem 1994; 222 (02) 267-276
  • 162 Pietrocola G, Nobile G, Gianotti V. et al. Molecular interactions of human plasminogen with fibronectin-binding protein B (FnBPB), a fibrinogen/fibronectin-binding protein from Staphylococcus aureus . J Biol Chem 2016; 291 (35) 18148-18162
  • 163 Klempner MS, Noring R, Epstein MP. et al. Binding of human plasminogen and urokinase-type plasminogen activator to the Lyme disease spirochete, Borrelia burgdorferi . J Infect Dis 1995; 171 (05) 1258-1265
  • 164 Fuchs H, Wallich R, Simon MM, Kramer MD. The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natl Acad Sci U S A 1994; 91 (26) 12594-12598
  • 165 Önder Ö, Humphrey PT, McOmber B. et al. OspC is potent plasminogen receptor on surface of Borrelia burgdorferi . J Biol Chem 2012; 287 (20) 16860-16868
  • 166 Sjöbring U, Pohl G, Olsén A. Plasminogen, absorbed by Escherichia coli expressing curli or by Salmonella enteritidis expressing thin aggregative fimbriae, can be activated by simultaneously captured tissue-type plasminogen activator (t-PA). Mol Microbiol 1994; 14 (03) 443-452
  • 167 Kukkonen M, Saarela S, Lähteenmäki K. et al. Identification of two laminin-binding fimbriae, the type 1 fimbria of Salmonella enterica serovar typhimurium and the G fimbria of Escherichia coli, as plasminogen receptors. Infect Immun 1998; 66 (10) 4965-4970
  • 168 Ralph AP, Carapetis JR. Group a streptococcal diseases and their global burden. Curr Top Microbiol Immunol 2013; 368: 1-27
  • 169 Frick IM, Shannon O, Neumann A, Karlsson C, Wikström M, Björck L. Streptococcal inhibitor of complement (SIC) modulates fibrinolysis and enhances bacterial survival within fibrin clots. J Biol Chem 2018; 293 (35) 13578-13591
  • 170 Lebeau C, Vandenesch F, Greenland T, Novick RP, Etienne J. Coagulase expression in Staphylococcus aureus is positively and negatively modulated by an agr-dependent mechanism. J Bacteriol 1994; 176 (17) 5534-5536
  • 171 Bokarewa MI, Jin T, Tarkowski A. Staphylococcus aureus: Staphylokinase. Int J Biochem Cell Biol 2006; 38 (04) 504-509
  • 172 Negrón O, Flick MJ. Does fibrinogen serve the host or the microbe in Staphylococcus infection?. Curr Opin Hematol 2019; 26 (05) 343-348
  • 173 Ko YP, Flick MJ. Fibrinogen is at the interface of host defense and pathogen virulence in Staphylococcus aureus infection. Semin Thromb Hemost 2016; 42 (04) 408-421
  • 174 Liesenborghs L, Verhamme P, Vanassche T. Staphylococcus aureus, master manipulator of the human hemostatic system. J Thromb Haemost 2018; 16 (03) 441-454
  • 175 Wann ER, Gurusiddappa S, Hook M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 2000; 275 (18) 13863-13871
  • 176 Geoghegan JA, Monk IR, O'Gara JP, Foster TJ. Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J Bacteriol 2013; 195 (11) 2675-2683
  • 177 Piroth L, Que YA, Widmer E. et al. The fibrinogen- and fibronectin-binding domains of Staphylococcus aureus fibronectin-binding protein A synergistically promote endothelial invasion and experimental endocarditis. Infect Immun 2008; 76 (08) 3824-3831
  • 178 Hawiger J, Timmons S, Strong DD, Cottrell BA, Riley M, Doolittle RF. Identification of a region of human fibrinogen interacting with staphylococcal clumping factor. Biochemistry 1982; 21 (06) 1407-1413
  • 179 Herman-Bausier P, Labate C, Towell AM, Derclaye S, Geoghegan JA, Dufrêne YF. Staphylococcus aureus clumping factor A is a force-sensitive molecular switch that activates bacterial adhesion. Proc Natl Acad Sci U S A 2018; 115 (21) 5564-5569
  • 180 McDevitt D, Francois P, Vaudaux P, Foster TJ. Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus . Mol Microbiol 1995; 16 (05) 895-907
  • 181 Higgins J, Loughman A, van Kessel KP, van Strijp JA, Foster TJ. Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. FEMS Microbiol Lett 2006; 258 (02) 290-296
  • 182 Malachowa N, Kobayashi SD, Porter AR. et al. Contribution of Staphylococcus aureus coagulases and clumping factor A to abscess formation in a Rabbit Model of skin and soft tissue infection. PLoS One 2016; 11 (06) e0158293
  • 183 Loughman A, Fitzgerald JR, Brennan MP. et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005; 57 (03) 804-818
  • 184 Ní Eidhin D, Perkins S, Francois P, Vaudaux P, Höök M, Foster TJ. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus . Mol Microbiol 1998; 30 (02) 245-257
  • 185 Miajlovic H, Loughman A, Brennan M, Cox D, Foster TJ. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007; 75 (07) 3335-3343
  • 186 Walker JN, Flores-Mireles AL, Pinkner CL. et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc Natl Acad Sci U S A 2017; 114 (41) E8721-E8730
  • 187 Zhang X, Wu M, Zhuo W. et al. Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen α. Protein Cell 2015; 6 (10) 757-766
  • 188 Vazquez V, Liang X, Horndahl JK. et al. Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). J Biol Chem 2011; 286 (34) 29797-29805
  • 189 Palma M, Shannon O, Quezada HC, Berg A, Flock JI. Extracellular fibrinogen-binding protein, Efb, from Staphylococcus aureus blocks platelet aggregation due to its binding to the alpha-chain. J Biol Chem 2001; 276 (34) 31691-31697
  • 190 Ko YP, Liang X, Smith CW, Degen JL, Höök M. Binding of Efb from Staphylococcus aureus to fibrinogen blocks neutrophil adherence. J Biol Chem 2011; 286 (11) 9865-9874
  • 191 Ko YP, Kuipers A, Freitag CM. et al. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 2013; 9 (12) e1003816
  • 192 Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 2009; 23 (10) 3393-3404
  • 193 Bertling A, Niemann S, Hussain M. et al. Staphylococcal extracellular adherence protein induces platelet activation by stimulation of thiol isomerases. Arterioscler Thromb Vasc Biol 2012; 32 (08) 1979-1990
  • 194 Chavakis T, Hussain M, Kanse SM. et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 2002; 8 (07) 687-693
  • 195 Thomas S, Liu W, Arora S, Ganesh V, Ko YP, Höök M. The complex fibrinogen interactions of the Staphylococcus aureus coagulases. Front Cell Infect Microbiol 2019; 9: 106
  • 196 Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Höök M. SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the Bbeta chain. J Biol Chem 2001; 276 (30) 27799-27805
  • 197 Vanzieleghem T, Herman-Bausier P, Dufrene YF, Mahillon J. Staphylococcus epidermidis affinity for fibrinogen-coated surfaces correlates with the abundance of the SdrG adhesin on the cell surface. Langmuir 2015; 31 (16) 4713-4721
  • 198 Brennan MP, Loughman A, Devocelle M. et al. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. J Thromb Haemost 2009; 7 (08) 1364-1372
  • 199 Whitnack E, Beachey EH. Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein. J Exp Med 1985; 162 (06) 1983-1997
  • 200 Ringdahl U, Svensson HG, Kotarsky H, Gustafsson M, Weineisen M, Sjöbring U. A role for the fibrinogen-binding regions of streptococcal M proteins in phagocytosis resistance. Mol Microbiol 2000; 37 (06) 1318-1326
  • 201 Carlsson F, Sandin C, Lindahl G. Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol 2005; 56 (01) 28-39
  • 202 Macheboeuf P, Buffalo C, Fu CY. et al. Streptococcal M1 protein constructs a pathological host fibrinogen network. Nature 2011; 472 (7341): 64-68
  • 203 Herwald H, Cramer H, Mörgelin M. et al. M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 2004; 116 (03) 367-379
  • 204 Oehmcke S, Mörgelin M, Herwald H. Activation of the human contact system on neutrophil extracellular traps. J Innate Immun 2009; 1 (03) 225-230
  • 205 Glinton K, Beck J, Liang Z. et al. Variable region in streptococcal M-proteins provides stable binding with host fibrinogen for plasminogen-mediated bacterial invasion. J Biol Chem 2017; 292 (16) 6775-6785
  • 206 Pietrocola G, Visai L, Valtulina V. et al. Multiple interactions of FbsA, a surface protein from Streptococcus agalactiae, with fibrinogen: affinity, stoichiometry, and structural characterization. Biochemistry 2006; 45 (42) 12840-12852
  • 207 Siauw C, Kobsar A, Dornieden C. et al. Group B streptococcus isolates from septic patients and healthy carriers differentially activate platelet signaling cascades. Thromb Haemost 2006; 95 (05) 836-849
  • 208 Pietrocola G, Schubert A, Visai L. et al. FbsA, a fibrinogen-binding protein from Streptococcus agalactiae, mediates platelet aggregation. Blood 2005; 105 (03) 1052-1059
  • 209 Schubert A, Zakikhany K, Pietrocola G. et al. The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells. Infect Immun 2004; 72 (11) 6197-6205
  • 210 Bierwagen P, Szpotkowski K, Jaskolski M, Urbanowicz A. Borrelia outer surface protein C is capable of human fibrinogen binding. FEBS J 2019; 286 (12) 2415-2428