CC BY 4.0 · Semin Liver Dis 2022; 42(01): 061-076
DOI: 10.1055/s-0041-1733876
Review Article

Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer

Daniel A. Patten*
1   National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
2   Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
,
Alex L. Wilkinson*
1   National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
2   Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
,
Ayla O'Keeffe
1   National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
2   Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
,
Shishir Shetty
1   National Institute for Health Research Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
2   Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
› Institutsangaben
Funding Funding received from Cancer Research UK under the ID: C53575/A29959; funding received from the Wellcome Trust under MIDAS Mechanisms of Inflammatory Disease.

Abstract

The scavenger receptor superfamily represents a highly diverse collection of evolutionarily-conserved receptors which are known to play key roles in host homeostasis, the most prominent of which is the clearance of unwanted endogenous macromolecules, such as oxidized low-density lipoproteins, from the systemic circulation. Members of this family have also been well characterized in their binding and internalization of a vast range of exogenous antigens and, consequently, are generally considered to be pattern recognition receptors, thus contributing to innate immunity. Several studies have implicated scavenger receptors in the pathophysiology of several inflammatory diseases, such as Alzheimer's and atherosclerosis. Hepatic resident cellular populations express a diverse complement of scavenger receptors in keeping with the liver's homeostatic functions, but there is gathering interest in the contribution of these receptors to hepatic inflammation and its complications. Here, we review the expression of scavenger receptors in the liver, their functionality in liver homeostasis, and their role in inflammatory liver disease and cancer.

* These authors contributed equally to this work.




Publikationsverlauf

Artikel online veröffentlicht:
22. September 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Global World Health Organisation. Global Health Estimates 2020: deaths by cause, age, sex, by country and by region, 2000–2019. Published 2020. Accessed April 27, 2021 at: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
  • 2 Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 2018; 67 (05) 963-972
  • 3 Hirschfield GM, Karlsen TH, Lindor KD, Adams DH. Primary sclerosing cholangitis. Lancet 2013; 382 (9904): 1587-1599
  • 4 Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14 (07) 397-411
  • 5 British Liver Trust. The alarming impact of liver disease in the UK. Published 2019. Updated June 2019. Accessed July 13, 2021 at: https://britishlivertrust.org.uk/wp-content/uploads/The-alarming-impact-of-liver-disease-FINAL-June-2019.pdf
  • 6 Pimpin L, Cortez-Pinto H, Negro F. et al; EASL HEPAHEALTH Steering Committee. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. J Hepatol 2018; 69 (03) 718-735
  • 7 O'Rourke JM, Sagar VM, Shah T, Shetty S. Carcinogenesis on the background of liver fibrosis: implications for the management of hepatocellular cancer. World J Gastroenterol 2018; 24 (39) 4436-4447
  • 8 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68 (06) 394-424
  • 9 Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13 (09) 621-634
  • 10 Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979; 76 (01) 333-337
  • 11 PrabhuDas MR, Baldwin CL, Bollyky PL. et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol 2017; 198 (10) 3775-3789
  • 12 Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 1997; 8 (05) 275-280
  • 13 Yu X, Guo C, Fisher PB, Subjeck JR, Wang XY. Scavenger receptors: emerging roles in cancer biology and immunology. Adv Cancer Res 2015; 128: 309-364
  • 14 Ramirez-Ortiz ZG, Pendergraft III WF, Prasad A. et al. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat Immunol 2013; 14 (09) 917-926
  • 15 Wermeling F, Chen Y, Pikkarainen T. et al. Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. J Exp Med 2007; 204 (10) 2259-2265
  • 16 Thanopoulou K, Fragkouli A, Stylianopoulou F, Georgopoulos S. Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc Natl Acad Sci U S A 2010; 107 (48) 20816-20821
  • 17 Rantakari P, Patten DA, Valtonen J. et al. Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury. Proc Natl Acad Sci U S A 2016; 113 (33) 9298-9303
  • 18 Kennedy DJ, Kashyap SR. Pathogenic role of scavenger receptor CD36 in the metabolic syndrome and diabetes. Metab Syndr Relat Disord 2011; 9 (04) 239-245
  • 19 El Khoury JB, Moore KJ, Means TK. et al. CD36 mediates the innate host response to β-amyloid. J Exp Med 2003; 197 (12) 1657-1666
  • 20 Armengol C, Bartolí R, Sanjurjo L. et al. Role of scavenger receptors in the pathophysiology of chronic liver diseases. Crit Rev Immunol 2013; 33 (01) 57-96
  • 21 Sørensen KK, McCourt P, Berg T. et al. The scavenger endothelial cell: a new player in homeostasis and immunity. Am J Physiol Regul Integr Comp Physiol 2012; 303 (12) R1217-R1230
  • 22 Wilkinson AL, Qurashi M, Shetty S. The role of sinusoidal endothelial cells in the axis of inflammation and cancer within the liver. Front Physiol 2020; 11: 990
  • 23 Li R, Oteiza A, Sørensen KK. et al. Role of liver sinusoidal endothelial cells and stabilins in elimination of oxidized low-density lipoproteins. Am J Physiol Gastrointest Liver Physiol 2011; 300 (01) G71-G81
  • 24 Politz O, Gratchev A, McCourt PA. et al. Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 2002; 362 (Pt 1): 155-164
  • 25 Harris EN, Cabral F. Ligand binding and signaling of HARE/Stabilin-2. Biomolecules 2019; 9 (07) 273
  • 26 Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991; 88 (06) 1785-1792
  • 27 Schledzewski K, Géraud C, Arnold B. et al. Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. J Clin Invest 2011; 121 (02) 703-714
  • 28 Malovic I, Sørensen KK, Elvevold KH. et al. The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. Hepatology 2007; 45 (06) 1454-1461
  • 29 Smedsrød B, Melkko J, Risteli L, Risteli J. Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 1990; 271 (02) 345-350
  • 30 Elvevold K, Simon-Santamaria J, Hasvold H, McCourt P, Smedsrød B, Sørensen KK. Liver sinusoidal endothelial cells depend on mannose receptor-mediated recruitment of lysosomal enzymes for normal degradation capacity. Hepatology 2008; 48 (06) 2007-2015
  • 31 Rijken DC, Otter M, Kuiper J, van Berkel TJ. Receptor-mediated endocytosis of tissue-type plasminogen activator (t-PA) by liver cells. Thromb Res 1990; 10: 63-71
  • 32 Martinez-Pomares L. The mannose receptor. J Leukoc Biol 2012; 92 (06) 1177-1186
  • 33 Smedsrød B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 1997; 322 (Pt 2): 567-573
  • 34 Lee SJ, Evers S, Roeder D. et al. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science 2002; 295 (5561): 1898-1901
  • 35 Pombinho R, Sousa S, Cabanes D. Scavenger receptors: promiscuous players during microbial pathogenesis. Crit Rev Microbiol 2018; 44 (06) 685-700
  • 36 Tripathi A, Debelius J, Brenner DA. et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15 (07) 397-411
  • 37 Broadley SP, Plaumann A, Coletti R. et al. Dual-track clearance of circulating bacteria balances rapid restoration of blood sterility with induction of adaptive immunity. Cell Host Microbe 2016; 20 (01) 36-48
  • 38 Ishiguro T, Naito M, Yamamoto T. et al. Role of macrophage scavenger receptors in response to Listeria monocytogenes infection in mice. Am J Pathol 2001; 158 (01) 179-188
  • 39 Means TK, Mylonakis E, Tampakakis E. et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med 2009; 206 (03) 637-653
  • 40 Helmy KY, Katschke Jr KJ, Gorgani NN. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 2006; 124 (05) 915-927
  • 41 Gorgani NN, He JQ, Katschke Jr KJ. et al. Complement receptor of the Ig superfamily enhances complement-mediated phagocytosis in a subpopulation of tissue resident macrophages. J Immunol 2008; 181 (11) 7902-7908
  • 42 Zeng Z, Surewaard BG, Wong CH, Geoghegan JA, Jenne CN, Kubes P. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne gram-positive bacteria. Cell Host Microbe 2016; 20 (01) 99-106
  • 43 Heinsbroek SE, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD, Gordon S. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 2008; 4 (11) e1000218
  • 44 Stewart CR, Stuart LM, Wilkinson K. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010; 11 (02) 155-161
  • 45 Heit B, Kim H, Cosío G. et al. Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 2013; 24 (04) 372-383
  • 46 Triantafilou M, Gamper FG, Haston RM. et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem 2006; 281 (41) 31002-31011
  • 47 Murshid A, Borges TJ, Lang BJ, Calderwood SK. The scavenger receptor SREC-I cooperates with toll-like receptors to trigger inflammatory innate immune responses. Front Immunol 2016; 7 (226) 226
  • 48 Jeannin P, Bottazzi B, Sironi M. et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 2005; 22 (05) 551-560
  • 49 Beauvillain C, Meloni F, Sirard J-C. et al. The scavenger receptors SRA-1 and SREC-I cooperate with TLR2 in the recognition of the hepatitis C virus non-structural protein 3 by dendritic cells. J Hepatol 2010; 52 (05) 644-651
  • 50 Murshid A, Gong J, Prince T, Borges TJ, Calderwood SK. Scavenger receptor SREC-I mediated entry of TLR4 into lipid microdomains and triggered inflammatory cytokine release in RAW 264.7 cells upon LPS activation. PLoS One 2015; 10 (04) e0122529
  • 51 Murshid A, Gong J, Ahmad R, Borges TJ, Calderwood SK. Scavenger receptor SREC-I promotes double stranded RNA-mediated TLR3 activation in human monocytes. Immunobiology 2015; 220 (06) 823-832
  • 52 Komai K, Shichita T, Ito M, Kanamori M, Chikuma S, Yoshimura A. Role of scavenger receptors as damage-associated molecular pattern receptors in Toll-like receptor activation. Int Immunol 2017; 29 (02) 59-70
  • 53 Hawkes M, Li X, Crockett M. et al. CD36 deficiency attenuates experimental mycobacterial infection. BMC Infect Dis 2010; 10 (01) 299
  • 54 Cha S-J, Park K, Srinivasan P. et al. CD68 acts as a major gateway for malaria sporozoite liver infection. J Exp Med 2015; 212 (09) 1391-1403
  • 55 Guillot A, Tacke F. Liver macrophages: old dogmas and new insights. Hepatol Commun 2019; 3 (06) 730-743
  • 56 Yao Z, Mates JM, Cheplowitz AM. et al. Blood-borne lipopolysaccharide is rapidly eliminated by liver sinusoidal endothelial cells via high-density lipoprotein. J Immunol 2016; 197 (06) 2390-2399
  • 57 Ganesan LP, Mohanty S, Kim J, Clark KR, Robinson JM, Anderson CL. Rapid and efficient clearance of blood-borne virus by liver sinusoidal endothelium. PLoS Pathog 2011; 7 (09) e1002281
  • 58 Mates JM, Yao Z, Cheplowitz AM. et al. Mouse liver sinusoidal endothelium eliminates HIV-like particles from blood at a rate of 100 million per minute by a second-order kinetic process. Front Immunol 2017; 8: 35
  • 59 Uhrig A, Banafsche R, Kremer M. et al. Development and functional consequences of LPS tolerance in sinusoidal endothelial cells of the liver. J Leukoc Biol 2005; 77 (05) 626-633
  • 60 Patten DA, Kamarajah SK, Rose JM. et al. SCARF-1 promotes adhesion of CD4+ T cells to human hepatic sinusoidal endothelium under conditions of shear stress. Sci Rep 2017; 7 (01) 17600
  • 61 Øie CI, Wolfson DL, Yasunori T. et al. Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci Rep 2020; 10 (01) 898
  • 62 Cabral F, Al-Rahem M, Skaggs J, Thomas TA, Kumar N, Wu Q, Fadda P, Yu L, Robinson JM, (Lt.) Kim J, Jarjour WN, Rajaram MVS, Harris EN, Ganesan LP. Stabilin receptors clear LPS and control systemic inflammation. Last accessed on July 23, 2021 at SSRN: https://ssrn.com/abstract=3845681 or http://dx.doi.org/10.2139/ssrn.3845681
  • 63 Limmer A, Ohl J, Kurts C. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med 2000; 6 (12) 1348-1354
  • 64 Schurich A, Böttcher JP, Burgdorf S. et al. Distinct kinetics and dynamics of cross-presentation in liver sinusoidal endothelial cells compared to dendritic cells. Hepatology 2009; 50 (03) 909-919
  • 65 Shetty S, Lalor PF, Adams DH. Liver sinusoidal endothelial cells - gatekeepers of hepatic immunity. Nat Rev Gastroenterol Hepatol 2018; 15 (09) 555-567
  • 66 Limmer A, Ohl J, Wingender G. et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur J Immunol 2005; 35 (10) 2970-2981
  • 67 Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 2008; 47 (01) 296-305
  • 68 Berg M, Wingender G, Djandji D. et al. Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8+ T cell tolerance. Eur J Immunol 2006; 36 (11) 2960-2970
  • 69 Höchst B, Schildberg FA, Böttcher J. et al. Liver sinusoidal endothelial cells contribute to CD8 T cell tolerance toward circulating carcinoembryonic antigen in mice. Hepatology 2012; 56 (05) 1924-1933
  • 70 Fontana RJ. Acute liver failure including acetaminophen overdose. Med Clin North Am 2008; 92 (04) 761-794 , viii
  • 71 Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. Acetaminophen-induced hepatotoxicity: a comprehensive update. J Clin Transl Hepatol 2016; 4 (02) 131-142
  • 72 Triantafyllou E, Woollard KJ, McPhail MJW, Antoniades CG, Possamai LA. The role of monocytes and macrophages in acute and acute-on-chronic liver failure. Front Immunol 2018; 9: 2948
  • 73 Hiraoka A, Horiike N, Akbar SM, Michitaka K, Matsuyama T, Onji M. Soluble CD163 in patients with liver diseases: very high levels of soluble CD163 in patients with fulminant hepatic failure. J Gastroenterol 2005; 40 (01) 52-56
  • 74 Møller HJ, Grønbaek H, Schiødt FV. et al; U.S. Acute Liver Failure Study Group. Soluble CD163 from activated macrophages predicts mortality in acute liver failure. J Hepatol 2007; 47 (05) 671-676
  • 75 Siggaard CB, Kazankov K, Rødgaard-Hansen S. et al. Macrophage markers soluble CD163 and soluble mannose receptor are associated with liver injury in patients with paracetamol overdose. Scand J Gastroenterol 2019; 54 (05) 623-632
  • 76 Grønbæk H, Rødgaard-Hansen S, Aagaard NK. et al; CANONIC study investigators of the EASL-CLIF Consortium. Macrophage activation markers predict mortality in patients with liver cirrhosis without or with acute-on-chronic liver failure (ACLF). J Hepatol 2016; 64 (04) 813-822
  • 77 Nielsen MC, Hvidbjerg Gantzel R, Clària J, Trebicka J, Møller HJ, Grønbæk H. Macrophage activation markers, CD163 and CD206, in acute-on-chronic liver failure. Cells 2020; 9 (05) 1175
  • 78 Zuo D, Yu X, Guo C. et al. Scavenger receptor A restrains T-cell activation and protects against concanavalin A-induced hepatic injury. Hepatology 2013; 57 (01) 228-238
  • 79 Labonte AC, Sung SJ, Jennelle LT, Dandekar AP, Hahn YS. Expression of scavenger receptor-AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis. Hepatology 2017; 65 (01) 32-43
  • 80 Patten DA, Shetty S. More than just a removal service: scavenger receptors in leukocyte trafficking. Front Immunol 2018; 9: 2904
  • 81 Patten DA, Shetty S. The role of Stabilin-1 in lymphocyte trafficking and macrophage scavenging in the liver microenvironment. Biomolecules 2019; 9 (07) 283
  • 82 Irjala H, Alanen K, Grénman R, Heikkilä P, Joensuu H, Jalkanen S. Mannose receptor (MR) and common lymphatic endothelial and vascular endothelial receptor (CLEVER)-1 direct the binding of cancer cells to the lymph vessel endothelium. Cancer Res 2003; 63 (15) 4671-4676
  • 83 Irjala H, Elima K, Johansson EL. et al. The same endothelial receptor controls lymphocyte traffic both in vascular and lymphatic vessels. Eur J Immunol 2003; 33 (03) 815-824
  • 84 Salmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S. CLEVER-1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 2004; 104 (13) 3849-3857
  • 85 Karikoski M, Irjala H, Maksimow M. et al. Clever-1/Stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur J Immunol 2009; 39 (12) 3477-3487
  • 86 Shetty S, Weston CJ, Adams DH, Lalor PF. A flow adhesion assay to study leucocyte recruitment to human hepatic sinusoidal endothelium under conditions of shear stress. J Vis Exp 2014; (85) 51330
  • 87 Shetty S, Weston CJ, Oo YH. et al. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J Immunol 2011; 186 (07) 4147-4155
  • 88 Shetty S, Bruns T, Weston CJ. et al. Recruitment mechanisms of primary and malignant B cells to the human liver. Hepatology 2012; 56 (04) 1521-1531
  • 89 Patten DA, Wilson GK, Bailey D. et al. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: a new step in migration. Hepatology 2017; 65 (01) 294-309
  • 90 Falkowski M, Schledzewski K, Hansen B, Goerdt S. Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces. Histochem Cell Biol 2003; 120 (05) 361-369
  • 91 Jung MY, Park SY, Kim IS. Stabilin-2 is involved in lymphocyte adhesion to the hepatic sinusoidal endothelium via the interaction with alphaMbeta2 integrin. J Leukoc Biol 2007; 82 (05) 1156-1165
  • 92 Géraud C, Koch P-S, Zierow J. et al. GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. J Clin Invest 2017; 127 (03) 1099-1114
  • 93 Shimaoka T, Nakayama T, Fukumoto N. et al. Cell surface-anchored SR-PSOX/CXC chemokine ligand 16 mediates firm adhesion of CXC chemokine receptor 6-expressing cells. J Leukoc Biol 2004; 75 (02) 267-274
  • 94 Yamauchi R, Tanaka M, Kume N. et al. Upregulation of SR-PSOX/CXCL16 and recruitment of CD8+ T cells in cardiac valves during inflammatory valvular heart disease. Arterioscler Thromb Vasc Biol 2004; 24 (02) 282-287
  • 95 Jiang X, Shimaoka T, Kojo S. et al. Cutting edge: critical role of CXCL16/CXCR6 in NKT cell trafficking in allograft tolerance. J Immunol 2005; 175 (04) 2051-2055
  • 96 Ruth JH, Haas CS, Park CC. et al. CXCL16-mediated cell recruitment to rheumatoid arthritis synovial tissue and murine lymph nodes is dependent upon the MAPK pathway. Arthritis Rheum 2006; 54 (03) 765-778
  • 97 Heydtmann M, Lalor PF, Eksteen JA, Hübscher SG, Briskin M, Adams DH. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J Immunol 2005; 174 (02) 1055-1062
  • 98 Sato T, Thorlacius H, Johnston B. et al. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J Immunol 2005; 174 (01) 277-283
  • 99 Hudspeth K, Donadon M, Cimino M. et al. Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun 2016; 66: 40-50
  • 100 Stegmann KA, Robertson F, Hansi N. et al. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver. Sci Rep 2016; 6 (01) 26157
  • 101 Geissmann F, Cameron TO, Sidobre S. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 2005; 3 (04) e113
  • 102 Xu H-B, Gong Y-P, Cheng J, Chu Y-W, Xiong S-D. CXCL16 participates in pathogenesis of immunological liver injury by regulating T lymphocyte infiltration in liver tissue. World J Gastroenterol 2005; 11 (32) 4979-4985
  • 103 Xu H, Xu W, Chu Y, Gong Y, Jiang Z, Xiong S. Involvement of up-regulated CXC chemokine ligand 16/scavenger receptor that binds phosphatidylserine and oxidized lipoprotein in endotoxin-induced lethal liver injury via regulation of T-cell recruitment and adhesion. Infect Immun 2005; 73 (07) 4007-4016
  • 104 Wang H, Shao Y, Zhang S. et al. CXCL16 deficiency attenuates acetaminophen-induced hepatotoxicity through decreasing hepatic oxidative stress and inflammation in mice. Acta Biochim Biophys Sin (Shanghai) 2017; 49 (06) 541-549
  • 105 Wehr A, Tacke F. The roles of CXCL16 and CXCR6 in liver inflammation and fibrosis. Curr Pathobiol Rep 2015; 3 (04) 283-290
  • 106 Piccolo P, Vetrini F, Mithbaokar P. et al. SR-A and SREC-I are Kupffer and endothelial cell receptors for helper-dependent adenoviral vectors. Mol Ther 2013; 21 (04) 767-774
  • 107 Patten DA, Wilkinson AL, O'Rourke JM, Shetty S. Prognostic value and potential immunoregulatory role of SCARF1 in hepatocellular carcinoma. Front Oncol 2020; 10: 1947
  • 108 Miyachi Y, Tsuchiya K, Komiya C. et al. Roles for cell-cell adhesion and contact in obesity-induced hepatic myeloid cell accumulation and glucose intolerance. Cell Rep 2017; 18 (11) 2766-2779
  • 109 Shetty S, Lalor PF, Adams DH. Lymphocyte recruitment to the liver: molecular insights into the pathogenesis of liver injury and hepatitis. Toxicology 2008; 254 (03) 136-146
  • 110 Furuta K, Guo Q, Pavelko KD. et al. Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis. J Clin Invest 2021; 131 (06) 143690
  • 111 Thomas DL. Global elimination of chronic hepatitis. N Engl J Med 2019; 380 (21) 2041-2050
  • 112 Jefferies M, Rauff B, Rashid H, Lam T, Rafiq S. Update on global epidemiology of viral hepatitis and preventive strategies. World J Clin Cases 2018; 6 (13) 589-599
  • 113 Ringehan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans R Soc Lond B Biol Sci 2017; 372 (1732): 20160274
  • 114 Harvey CE, Post JJ, Palladinetti P. et al. Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation. J Leukoc Biol 2003; 74 (03) 360-369
  • 115 Zeremski M, Petrovic LM, Talal AH. The role of chemokines as inflammatory mediators in chronic hepatitis C virus infection. J Viral Hepat 2007; 14 (10) 675-687
  • 116 Li K, Li NL, Wei D, Pfeffer SR, Fan M, Pfeffer LM. Activation of chemokine and inflammatory cytokine response in hepatitis C virus-infected hepatocytes depends on Toll-like receptor 3 sensing of hepatitis C virus double-stranded RNA intermediates. Hepatology 2012; 55 (03) 666-675
  • 117 Shen W-J, Azhar S, Kraemer FBSR. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu Rev Physiol 2018; 80: 95-116
  • 118 Pileri P, Uematsu Y, Campagnoli S. et al. Binding of hepatitis C virus to CD81. Science 1998; 282 (5390): 938-941
  • 119 Scarselli E, Ansuini H, Cerino R. et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 2002; 21 (19) 5017-5025
  • 120 Evans MJ, von Hahn T, Tscherne DM. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007; 446 (7137): 801-805
  • 121 Ploss A, Evans MJ, Gaysinskaya VA. et al. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 2009; 457 (7231): 882-886
  • 122 Bartosch B, Vitelli A, Granier C. et al. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 2003; 278 (43) 41624-41630
  • 123 Westhaus S, Deest M, Nguyen ATX. et al. Scavenger receptor class B member 1 (SCARB1) variants modulate hepatitis C virus replication cycle and viral load. J Hepatol 2017; 67 (02) 237-245
  • 124 Hsu C-S, Hsu S-J, Liu W-L, Chen D-S, Kao J-H. Association of SCARB1 gene polymorphisms with virological response in chronic hepatitis C patients receiving pegylated interferon plus ribavirin therapy. Sci Rep 2016; 6 (01) 32303
  • 125 Sadeghi S, Davari M, Asli E. et al. Effect of IL15 rs10833 and SCARB1 rs10846744 on virologic responses in chronic hepatitis C patients treated with pegylated interferon-α and ribavirin. Gene 2017; 630: 28-34
  • 126 Sulkowski MS, Kang M, Matining R. et al; AIDS Clinical Trials Group A5277 Protocol Team. Safety and antiviral activity of the HCV entry inhibitor ITX5061 in treatment-naive HCV-infected adults: a randomized, double-blind, phase 1b study. J Infect Dis 2014; 209 (05) 658-667
  • 127 Rowe IA, Tully DC, Armstrong MJ. et al. Effect of scavenger receptor class B type I antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation. Liver Transpl 2016; 22 (03) 287-297
  • 128 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
  • 129 Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121: 27-42
  • 130 Schneiderhan W, Schmid-Kotsas A, Zhao J. et al. Oxidized low-density lipoproteins bind to the scavenger receptor, CD36, of hepatic stellate cells and stimulate extracellular matrix synthesis. Hepatology 2001; 34 (4, Pt 1): 729-737
  • 131 Kang Q, Chen A. Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1. Lab Invest 2009; 89 (11) 1275-1290
  • 132 Gieseler RK, Marquitan G, Schlattjan M. et al. Hepatocyte apoptotic bodies encasing nonstructural HCV proteins amplify hepatic stellate cell activation: implications for chronic hepatitis C. J Viral Hepat 2011; 18 (11) 760-767
  • 133 Schattenberg JM, Lazarus JV, Newsome PN. et al. Disease burden and economic impact of diagnosed non-alcoholic steatohepatitis in five European countries in 2018: a cost-of-illness analysis. Liver Int 2021; 41 (06) 1227-1242
  • 134 Govaere O, Martinez-Lopez N, Petersen SK. et al. Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. bioRxiv 2020; DOI: 10.1101/2020.02.01.930115.
  • 135 Qiu Y, Liu S, Chen H-T. et al. Upregulation of caveolin-1 and SR-B1 in mice with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2013; 12 (06) 630-636
  • 136 Hoekstra M, Ouweneel AB, Price J. et al. SR-BI deficiency disassociates obesity from hepatic steatosis and glucose intolerance development in high fat diet-fed mice. J Nutr Biochem 2021; 89: 108564
  • 137 Rada P, González-Rodríguez Á, García-Monzón C, Valverde ÁM. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver?. Cell Death Dis 2020; 11 (09) 802
  • 138 Chabowski A, Żendzian-Piotrowska M, Konstantynowicz K. et al. Fatty acid transporters involved in the palmitate and oleate induced insulin resistance in primary rat hepatocytes. Acta Physiol (Oxf) 2013; 207 (02) 346-357
  • 139 Li Y, Yang P, Zhao L. et al. CD36 plays a negative role in the regulation of lipophagy in hepatocytes through an AMPK-dependent pathway. J Lipid Res 2019; 60 (04) 844-855
  • 140 Strauss O, Phillips A, Ruggiero K, Bartlett A, Dunbar PR. Immunofluorescence identifies distinct subsets of endothelial cells in the human liver. Sci Rep 2017; 7 (01) 44356
  • 141 Kawanishi N, Mizokami T, Yada K, Suzuki K. Exercise training suppresses scavenger receptor CD36 expression in kupffer cells of nonalcoholic steatohepatitis model mice. Physiol Rep 2018; 6 (23) e13902
  • 142 Niu B, He K, Li P. et al. SIRT1 upregulation protects against liver injury induced by a HFD through inhibiting CD36 and the NF‑κB pathway in mouse Kupffer cells. Mol Med Rep 2018; 18 (02) 1609-1615
  • 143 Couturier J, Nuotio-Antar AM, Agarwal N. et al. Lymphocytes upregulate CD36 in adipose tissue and liver. Adipocyte 2019; 8 (01) 154-163
  • 144 Miquilena-Colina ME, Lima-Cabello E, Sánchez-Campos S. et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 2011; 60 (10) 1394-1402
  • 145 Sheedfar F, Sung MM, Aparicio-Vergara M. et al. Increased hepatic CD36 expression with age is associated with enhanced susceptibility to nonalcoholic fatty liver disease. Aging (Albany NY) 2014; 6 (04) 281-295
  • 146 Zhang P, Ge Z, Wang H. et al. Prolactin improves hepatic steatosis via CD36 pathway. J Hepatol 2018; 68 (06) 1247-1255
  • 147 Koonen DP, Jacobs RL, Febbraio M. et al. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 2007; 56 (12) 2863-2871
  • 148 Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, Weiss EJ. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology 2016; 157 (02) 570-585
  • 149 Handberg A, Højlund K, Gastaldelli A. et al; RISC Investigators. Plasma sCD36 is associated with markers of atherosclerosis, insulin resistance and fatty liver in a nondiabetic healthy population. J Intern Med 2012; 271 (03) 294-304
  • 150 Heebøll S, Poulsen MK, Ornstrup MJ. et al. Circulating sCD36 levels in patients with non-alcoholic fatty liver disease and controls. Int J Obes 2017; 41 (02) 262-267
  • 151 Ma C, Han M, Heinrich B. et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018; 360 (6391): eaan5931
  • 152 Karikoski M, Marttila-Ichihara F, Elima K. et al. Clever-1/stabilin-1 controls cancer growth and metastasis. Clin Cancer Res 2014; 20 (24) 6452-6464
  • 153 O'Rourke JM, Patten DA, Shetty S. Tumour-associated macrophages in hepatocellular carcinoma: pressing the metabolic switch to prevent T cell responses. J Hepatol 2019; 71 (02) 243-245
  • 154 Yeung OWH, Lo C-M, Ling C-C. et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol 2015; 62 (03) 607-616
  • 155 Kuang D-M, Zhao Q, Peng C. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 2009; 206 (06) 1327-1337
  • 156 Biswas SK, Gangi L, Paul S. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 2006; 107 (05) 2112-2122
  • 157 Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010; 32 (05) 593-604
  • 158 Dong P, Ma L, Liu L. et al. CD86+/CD206+, diametrically polarized tumor-associated macrophages, predict hepatocellular carcinoma patient prognosis. Int J Mol Sci 2016; 17 (03) 320
  • 159 Ren C-X, Leng R-X, Fan Y-G. et al. Intratumoral and peritumoral expression of CD68 and CD206 in hepatocellular carcinoma and their prognostic value. Oncol Rep 2017; 38 (02) 886-898
  • 160 Sica A, Saccani A, Bottazzi B. et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-κ B activation in tumor-associated macrophages. J Immunol 2000; 164 (02) 762-767
  • 161 Monti P, Leone BE, Zerbi A. et al. Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell. J Immunol 2004; 172 (12) 7341-7349
  • 162 Jaynes JM, Sable R, Ronzetti M. et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med 2020; 12 (530) eaax6337
  • 163 Edin S, Wikberg ML, Dahlin AM. et al. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 2012; 7 (10) e47045
  • 164 Fujimura T, Kambayashi Y, Furudate S, Kakizaki A, Aiba S. Immunomodulatory effect of bisphosphonate risedronate sodium on CD163+ arginase 1+ M2 macrophages: the development of a possible supportive therapy for angiosarcoma. Clin Dev Immunol 2013; 2013: 325412
  • 165 Komohara Y, Niino D, Saito Y. et al. Clinical significance of CD163+ tumor-associated macrophages in patients with adult T-cell leukemia/lymphoma. Cancer Sci 2013; 104 (07) 945-951
  • 166 Tiainen S, Tumelius R, Rilla K. et al. High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 2015; 66 (06) 873-883
  • 167 Kristiansen M, Graversen JH, Jacobsen C. et al. Identification of the haemoglobin scavenger receptor. Nature 2001; 409 (6817): 198-201
  • 168 Schaer DJ, Alayash AI, Buehler PW. Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor. Antioxid Redox Signal 2007; 9 (07) 991-999
  • 169 Philippidis P, Mason JC, Evans BJ. et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res 2004; 94 (01) 119-126
  • 170 Sierra-Filardi E, Vega MA, Sánchez-Mateos P, Corbí AL, Puig-Kröger A. Heme oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immunobiology 2010; 215 (9-10): 788-795
  • 171 Weis N, Weigert A, von Knethen A, Brüne B. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol Biol Cell 2009; 20 (05) 1280-1288
  • 172 Bover LC, Cardó-Vila M, Kuniyasu A. et al. A previously unrecognized protein-protein interaction between TWEAK and CD163: potential biological implications. J Immunol 2007; 178 (12) 8183-8194
  • 173 Motomura T, Shirabe K, Mano Y. et al. Neutrophil-lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J Hepatol 2013; 58 (01) 58-64
  • 174 Riabov V, Yin S, Song B. et al. Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model. Oncotarget 2016; 7 (21) 31097-31110
  • 175 Hollmén M, Figueiredo CR, Jalkanen S. New tools to prevent cancer growth and spread: a ‘Clever’ approach. Br J Cancer 2020; 123 (04) 501-509
  • 176 Virtakoivu R, Rannikko J, Viitala M. et al. Systemic blockade of Clever-1 elicits lymphocyte activation alongside checkpoint molecule downregulation in patients with solid tumors: Results from a Phase I/II Clinical Trial. Clin Cancer Res 2021; ; June:OF1–OF16. DOI: 10.1158/1078-0432.CCR-20-4862.
  • 177 Seifert L, Deutsch M, Alothman S. et al. Dectin-1 regulates hepatic fibrosis and hepatocarcinogenesis by suppressing TLR4 signaling pathways. Cell Rep 2015; 13 (09) 1909-1921
  • 178 Liu M, Luo F, Ding C. et al. Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. J Immunol 2015; 195 (10) 5055-5065
  • 179 Chiba S, Ikushima H, Ueki H. et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 2014; 3: e04177
  • 180 Mattiola I, Tomay F, De Pizzol M. et al. The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat Immunol 2019; 20 (08) 1012-1022
  • 181 Shi B, Abrams M, Sepp-Lorenzino L. Expression of asialoglycoprotein receptor 1 in human hepatocellular carcinoma. J Histochem Cytochem 2013; 61 (12) 901-909
  • 182 Witzigmann D, Quagliata L, Schenk SH, Quintavalle C, Terracciano LM, Huwyler J. Variable asialoglycoprotein receptor 1 expression in liver disease: Implications for therapeutic intervention. Hepatol Res 2016; 46 (07) 686-696
  • 183 Steirer LM, Park EI, Townsend RR, Baenziger JU. The asialoglycoprotein receptor regulates levels of plasma glycoproteins terminating with sialic acid α2,6-galactose. J Biol Chem 2009; 284 (06) 3777-3783
  • 184 Park EI, Mi Y, Unverzagt C, Gabius H-J, Baenziger JU. The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acid α 2,6GalNAc. Proc Natl Acad Sci U S A 2005; 102 (47) 17125-17129
  • 185 Gu D, Jin H, Jin G. et al. The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity. Cancer Lett 2016; 379 (01) 107-116
  • 186 Xiao Y, Chen B, Yang K. et al. Down-regulation of MARCO associates with tumor progression in hepatocellular carcinoma. Exp Cell Res 2019; 383 (02) 111542
  • 187 Beattie L, Sawtell A, Mann J. et al. Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J Hepatol 2016; 65 (04) 758-768
  • 188 Sun H, Song J, Weng C. et al. Association of decreased expression of the macrophage scavenger receptor MARCO with tumor progression and poor prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 2017; 32 (05) 1107-1114
  • 189 Stephen SL, Freestone K, Dunn S. et al. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int J Hypertens 2010; 2010: 646929-646929
  • 190 Vasquez M, Simões I, Consuegra-Fernández M, Aranda F, Lozano F, Berraondo P. Exploiting scavenger receptors in cancer immunotherapy: lessons from CD5 and SR-B1. Eur J Immunol 2017; 47 (07) 1108-1118
  • 191 Enciu AM, Radu E, Popescu ID, Hinescu ME, Ceafalan LC. Targeting CD36 as biomarker for metastasis prognostic: how far from translation into clinical practice?. BioMed Res Int 2018; 2018: 7801202
  • 192 Aizarani N, Saviano A, Sagar. Mailly L, Durand S, Herman JS, Pessaux P, Baumert TF, Grün D. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019; 572 (7768): 199-204
  • 193 Ramachandran P, Dobie R, Wilson-Kanamori JR. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019; 575 (7783): 512-518
  • 194 Dobie R, Wilson-Kanamori JR, Henderson BEP. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep 2019; 29 (07) 1832.e8-1847.e8
  • 195 Wang H, Thorling CA, Liang X. et al. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B Mater Biol Med 2015; 3 (06) 939-958
  • 196 Hayashi Y, Takamiya M, Jensen PB. et al. Differential nanoparticle sequestration by macrophages and scavenger endothelial cells visualized in vivo in real-time and at ultrastructural resolution. ACS Nano 2020; 14 (02) 1665-1681
  • 197 Allen RJ, Mathew B, Rice KG. PEG-peptide inhibition of scavenger receptor uptake of nanoparticles by the liver. Mol Pharm 2018; 15 (09) 3881-3891
  • 198 Campbell F, Bos FL, Sieber S. et al. Directing nanoparticle biodistribution through evasion and exploitation of Stab2-dependent nanoparticle uptake. ACS Nano 2018; 12 (03) 2138-2150
  • 199 Arias-Alpizar G, Koch B, Hamelmann NM. et al. Stabilin-1 is required for the endothelial clearance of small anionic nanoparticles. Nanomedicine (Lond) 2021; 34: 102395
  • 200 Miller CM, Donner AJ, Blank EE. et al. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res 2016; 44 (06) 2782-2794
  • 201 Gökirmak T, Nikan M, Wiechmann S, Prakash TP, Tanowitz M, Seth PP. Overcoming the challenges of tissue delivery for oligonucleotide therapeutics. Trends Pharmacol Sci 2021; 42 (07) 588-604
  • 202 Willoughby JLS, Chan A, Sehgal A. et al. Evaluation of GalNAc-siRNA conjugate activity in pre-clinical animal models with reduced asialoglycoprotein receptor expression. Mol Ther 2018; 26 (01) 105-114
  • 203 Graversen JH, Svendsen P, Dagnæs-Hansen F. et al. Targeting the hemoglobin scavenger receptor CD163 in macrophages highly increases the anti-inflammatory potency of dexamethasone. Mol Ther 2012; 20 (08) 1550-1558
  • 204 Svendsen P, Graversen JH, Etzerodt A. et al. Antibody-directed glucocorticoid targeting to CD163 in M2-type macrophages attenuates fructose-induced liver inflammatory changes. Mol Ther Methods Clin Dev 2016; 4: 50-61
  • 205 Etzerodt A, Tsalkitzi K, Maniecki M. et al. Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression. J Exp Med 2019; 216 (10) 2394-2411
  • 206 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14 (03) 181-194