Semin Thromb Hemost 2022; 48(03): 382-404
DOI: 10.1055/s-0041-1733960
Review Article

Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease

1   Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
,
1   Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
› Institutsangaben
Funding None.

Abstract

The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction—(neuro)inflammation, neurovascular dysfunction, and hypercoagulation—illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.

Authors' Contributions

M.J.P. wrote paper, prepared figures and tables; E.P. is the study leader and corresponding author. Both authors reviewed the manuscript.




Publikationsverlauf

Artikel online veröffentlicht:
08. Oktober 2021

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol 2020; 27 (01) 27-42
  • 2 Heneka MT, Carson MJ, El Khoury J. et al. Neuroinflammation in Alzheimer's disease. Lancet Neurol 2015; 14 (04) 388-405
  • 3 Hirsch EC, Hunot S. Neuroinflammation in Parkinson's disease: a target for neuroprotection?. Lancet Neurol 2009; 8 (04) 382-397
  • 4 Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 2010; 120 (03) 382-404
  • 5 Bu XL, Wang X, Xiang Y. et al. The association between infectious burden and Parkinson's disease: a case-control study. Parkinsonism Relat Disord 2015; 21 (08) 877-881
  • 6 Bu XL, Yao XQ, Jiao SS. et al. A study on the association between infectious burden and Alzheimer's disease. Eur J Neurol 2015; 22 (12) 1519-1525
  • 7 Sochocka M, Zwolińska K, Leszek J. The infectious etiology of Alzheimer's disease. Curr Neuropharmacol 2017; 15 (07) 996-1009
  • 8 Limphaibool N, Iwanowski P, Holstad MJV, Kobylarek D, Kozubski W. Infectious etiologies of Parkinsonism: pathomechanisms and clinical implications. Front Neurol 2019; 10 (652) 652
  • 9 Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007; 7 (02) 161-167
  • 10 Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P. Triggers, facilitators, and aggravators: redefining Parkinson's disease pathogenesis. Trends Neurosci 2019; 42 (01) 4-13
  • 11 Caggiu E, Arru G, Hosseini S. et al. Inflammation, Infectious Triggers, and Parkinson's Disease. Rev Front Neurol 2019; 10 (122) 122
  • 12 Olumuyiwa-Akeredolu OO, Page MJ, Soma P, Pretorius E. Platelets: emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat Rev Rheumatol 2019; 15 (04) 237-248
  • 13 Pretorius E. Platelets as potent signaling entities in type 2 diabetes mellitus. Trends Endocrinol Metab 2019; 30 (08) 532-545
  • 14 Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early host interactions that drive the dysregulated response in sepsis. Rev Front Immunol 2019; 10 (174) 1748
  • 15 Palacios-Acedo AL, Mège D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L. Platelets, thrombo-inflammation, and cancer: collaborating with the enemy. Rev Front Immunol 2019; 10 (180) 1805
  • 16 Hyman BT, Phelps CH, Beach TG. et al. National Institute on aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement 2012; 8 (01) 1-13
  • 17 Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. Lancet 2011; 377 (9770): 1019-1031
  • 18 Kalia LV, Lang AE. Parkinson's disease. Lancet 2015; 386 (9996): 896-912
  • 19 Fan L, Mao C, Hu X. et al. New insights into the pathogenesis of Alzheimer's disease. Rev Front Neurol 2020; 10 (1312): 1312
  • 20 Henderson MX, Trojanowski JQ, Lee VM. α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett 2019; 709: 134316
  • 21 Malik BR, Maddison DC, Smith GA, Peters OM. Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol Brain 2019; 12 (01) 100
  • 22 Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 2019; 25 (07) 816-824
  • 23 Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N. Neuroinflammation as a common feature of neurodegenerative disorders. Rev Front Pharmacol 2019; 10 (1008): 1008
  • 24 Krstic D, Knuesel I. Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 2013; 9 (01) 25-34
  • 25 Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8 (01) 57-69
  • 26 Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol 2010; 6 (04) 193-201
  • 27 Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson's disease and animal models of the disease. Prog Neurobiol 2017; 155: 57-75
  • 28 Perry VH, Holmes C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014; 10 (04) 217-224
  • 29 Liddelow SA, Guttenplan KA, Clarke LE. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541 (7638): 481-487
  • 30 Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann Transl Med 2015; 3 (10) 136
  • 31 Milner MT, Maddugoda M, Götz J, Burgener SS, Schroder K. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer's disease. Curr Opin Immunol 2021; 68: 116-124
  • 32 Yan YQ, Fang Y, Zheng R, Pu JL, Zhang BR. NLRP3 inflammasomes in Parkinson's disease and their regulation by Parkin. Neuroscience 2020; 446: 323-334
  • 33 Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019; 332: 16-30
  • 34 Brkic M, Balusu S, Libert C, Vandenbroucke RE. Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm 2015; 2015: 620581
  • 35 Tahmasebinia F, Pourgholaminejad A. The role of Th17 cells in auto-inflammatory neurological disorders. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79 (Pt B): 408-416
  • 36 Milovanovic J, Arsenijevic A, Stojanovic B. et al. Interleukin-17 in chronic inflammatory neurological diseases. Rev Front Immunol 2020; 11 (947) 947
  • 37 Kam TI, Song S, Gwon Y. et al. FcγRIIb mediates amyloid-β neurotoxicity and memory impairment in Alzheimer's disease. J Clin Invest 2013; 123 (07) 2791-2802
  • 38 Fuzzati-Armentero MT, Cerri S, Blandini F. Peripheral-central neuroimmune crosstalk in Parkinson's disease: what do patients and animal models tell us?. Rev Front Neurol 2019; 10 (232) 232
  • 39 Walker KA, Ficek BN, Westbrook R. Understanding the role of systemic inflammation in Alzheimer's disease. ACS Chem Neurosci 2019; 10 (08) 3340-3342
  • 40 Walker KA. Inflammation and neurodegeneration: chronicity matters. Aging (Albany NY) 2018; 11 (01) 3-4
  • 41 Brown GC. The endotoxin hypothesis of neurodegeneration. J Neuroinflammation 2019; 16 (01) 180
  • 42 Giridharan VV, Masud F, Petronilho F, Dal-Pizzol F, Barichello T. Infection-induced systemic inflammation is a potential driver of Alzheimer's disease progression. Front Aging Neurosci 2019; 11: 122
  • 43 Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol 2009; 9 (06) 429-439
  • 44 Spielman LJ, Gibson DL, Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int 2018; 120: 149-163
  • 45 Morgan BP. Complement in the pathogenesis of Alzheimer's disease. Semin Immunopathol 2018; 40 (01) 113-124
  • 46 Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun 2017; 60: 1-12
  • 47 Ahmad A, Patel V, Xiao J, Khan MM. The role of neurovascular system in neurodegenerative diseases. Mol Neurobiol 2020; 57 (11) 4373-4393
  • 48 Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim Biophys Acta 2016; 1862 (05) 887-900
  • 49 Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 2017; 18 (07) 419-434
  • 50 Hur WS, Mazinani N, Lu XJD. et al. Coagulation factor XIIIa cross-links amyloid β into dimers and oligomers and to blood proteins. J Biol Chem 2019; 294 (02) 390-396
  • 51 Cajamarca SA, Norris EH, van der Weerd L, Strickland S, Ahn HJ. Cerebral amyloid angiopathy-linked β-amyloid mutations promote cerebral fibrin deposits via increased binding affinity for fibrinogen. Proc Natl Acad Sci U S A 2020; 117 (25) 14482-14492
  • 52 Mielke MM, Rosenberg PB, Tschanz J. et al. Vascular factors predict rate of progression in Alzheimer disease. Neurology 2007; 69 (19) 1850-1858
  • 53 Hou L, Li Q, Jiang L. et al. Hypertension and diagnosis of Parkinson's disease: a meta-analysis of cohort studies. Front Neurol 2018; 9: 162
  • 54 Zhou J, Yu JT, Wang HF. et al. Association between stroke and Alzheimer's disease: systematic review and meta-analysis. J Alzheimers Dis 2015; 43 (02) 479-489
  • 55 Liu Y, Xue L, Zhang Y, Xie A. Association between stroke and Parkinson's disease: a meta-analysis. J Mol Neurosci 2020; 70 (08) 1169-1176
  • 56 Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer's disease crosstalk. Neurosci Biobehav Rev 2016; 64: 272-287
  • 57 De Pablo-Fernandez E, Goldacre R, Pakpoor J, Noyce AJ, Warner TT. Association between diabetes and subsequent Parkinson disease: a record-linkage cohort study. Neurology 2018; 91 (02) e139-e142
  • 58 Xie B, Shi X, Xing Y, Tang Y. Association between atherosclerosis and Alzheimer's disease: a systematic review and meta-analysis. Brain Behav 2020; 10 (04) e01601
  • 59 Suidan GL, Singh PK, Patel-Hett S. et al. Abnormal clotting of the intrinsic/contact pathway in Alzheimer disease patients is related to cognitive ability. Blood Adv 2018; 2 (09) 954-963
  • 60 Begic E, Hadzidedic S, Obradovic S, Begic Z, Causevic M. Increased levels of coagulation factor XI in plasma are related to Alzheimer's disease diagnosis. J Alzheimers Dis 2020; 77 (01) 375-386
  • 61 Zamolodchikov D, Renné T, Strickland S. The Alzheimer's disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII. J Thromb Haemost 2016; 14 (05) 995-1007
  • 62 Zamolodchikov D, Strickland S. Aβ delays fibrin clot lysis by altering fibrin structure and attenuating plasminogen binding to fibrin. Blood 2012; 119 (14) 3342-3351
  • 63 Cortes-Canteli M, Mattei L, Richards AT, Norris EH, Strickland S. Fibrin deposited in the Alzheimer's disease brain promotes neuronal degeneration. Neurobiol Aging 2015; 36 (02) 608-617
  • 64 Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer's disease brain. J Cell Mol Med 2009; 13 (9A): 2911-2925
  • 65 Ahn HJ, Glickman JF, Poon KL. et al. A novel Aβ-fibrinogen interaction inhibitor rescues altered thrombosis and cognitive decline in Alzheimer's disease mice. J Exp Med 2014; 211 (06) 1049-1062
  • 66 Paul J, Strickland S, Melchor JP. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J Exp Med 2007; 204 (08) 1999-2008
  • 67 Iannucci J, Renehan W, Grammas P. Thrombin, a mediator of coagulation, inflammation, and neurotoxicity at the neurovascular interface: implications for Alzheimer's disease. Front Neurosci 2020; 14: 762
  • 68 Grammas P, Martinez JM. Targeting thrombin: an inflammatory neurotoxin in Alzheimer's disease. J Alzheimers Dis 2014; 42 (Suppl. 04) S537-S544
  • 69 Göbel K, Eichler S, Wiendl H, Chavakis T, Kleinschnitz C, Meuth SG. The coagulation factors fibrinogen, thrombin, and factor XII in inflammatory disorders—a systematic review. Front Immunol 2018; 9: 1731
  • 70 Grossmann K. Anticoagulants for treatment of Alzheimer's disease. J Alzheimers Dis 2020; 77 (04) 1373-1382
  • 71 Sato Y, Kaji M, Metoki N, Yoshida H, Satoh K. Coagulation-fibrinolysis abnormalities in patients receiving antiparkinsonian agents. J Neurol Sci 2003; 212 (1-2): 55-58
  • 72 Adams B, Nunes JM, Page MJ. et al. Parkinson's disease: a systemic inflammatory disease accompanied by bacterial inflammagens. Front Aging Neurosci 2019; 11: 210
  • 73 Pretorius E, Page MJ, Mbotwe S, Kell DB. Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson's disease. PLoS One 2018; 13 (03) e0192121
  • 74 de Waal GM, Engelbrecht L, Davis T, de Villiers WJS, Kell DB, Pretorius E. Correlative light-electron microscopy detects lipopolysaccharide and its association with fibrin fibres in Parkinson's disease, Alzheimer's disease and type 2 diabetes mellitus. Sci Rep 2018; 8 (01) 16798
  • 75 Infante J, Prieto C, Sierra M. et al. Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson's disease. Neurobiol Aging 2016; 38: 214.e1-214.e5
  • 76 Ma S-X, Kim D, Xiong Y. et al. Complement and coagulation cascades are potentially involved in dopaminergic neurodegeneration in α-synuclein-based mouse models of Parkinson's disease. bioRxiv 2020; :2020.01.11.900886 DOI: 10.1101/2020.01.11.900886.
  • 77 Leiter O, Walker TL. Platelets in neurodegenerative conditions-friend or foe?. Front Immunol 2020; 11: 747
  • 78 Leiter O, Walker TL. Platelets: the missing link between the blood and brain?. Prog Neurobiol 2019; 183: 101695
  • 79 Kocovski P, Jiang X, D'Souza CS. et al. Platelet depletion is effective in ameliorating anxiety-like behavior and reducing the pro-inflammatory environment in the hippocampus in murine experimental autoimmune encephalomyelitis. J Clin Med 2019; 8 (02) 162
  • 80 Kazanis I, Feichtner M, Lange S. et al. Lesion-induced accumulation of platelets promotes survival of adult neural stem / progenitor cells. Exp Neurol 2015; 269: 75-89
  • 81 Kniewallner KM, Ehrlich D, Kiefer A, Marksteiner J, Humpel C. Platelets in the Alzheimer's disease brain: do they play a role in cerebral amyloid angiopathy?. Curr Neurovasc Res 2015; 12 (01) 4-14
  • 82 Jarre A, Gowert NS, Donner L. et al. Pre-activated blood platelets and a pro-thrombotic phenotype in APP23 mice modeling Alzheimer's disease. Cell Signal 2014; 26 (09) 2040-2050
  • 83 Sevush S, Jy W, Horstman LL, Mao WW, Kolodny L, Ahn YS. Platelet activation in Alzheimer disease. Arch Neurol 1998; 55 (04) 530-536
  • 84 Canobbio I, Visconte C, Oliviero B. et al. Increased platelet adhesion and thrombus formation in a mouse model of Alzheimer's disease. Cell Signal 2016; 28 (12) 1863-1871
  • 85 Prodan CI, Ross ED, Vincent AS, Dale GL. Rate of progression in Alzheimer's disease correlates with coated-platelet levels–a longitudinal study. Transl Res 2008; 152 (03) 99-102
  • 86 Prodan CI, Ross ED, Stoner JA, Cowan LD, Vincent AS, Dale GL. Coated-platelet levels and progression from mild cognitive impairment to Alzheimer disease. Neurology 2011; 76 (03) 247-252
  • 87 Bester J, Soma P, Kell DB, Pretorius E. Viscoelastic and ultrastructural characteristics of whole blood and plasma in Alzheimer-type dementia, and the possible role of bacterial lipopolysaccharides (LPS). Oncotarget 2015; 6 (34) 35284-35303
  • 88 Ciabattoni G, Porreca E, Di Febbo C. et al. Determinants of platelet activation in Alzheimer's disease. Neurobiol Aging 2007; 28 (03) 336-342
  • 89 Canobbio I, Catricalà S, Di Pasqua LG. et al. Immobilized amyloid Aβ peptides support platelet adhesion and activation. FEBS Lett 2013; 587 (16) 2606-2611
  • 90 Shen MY, Hsiao G, Fong TH. et al. Amyloid beta peptide-activated signal pathways in human platelets. Eur J Pharmacol 2008; 588 (2-3): 259-266
  • 91 Shen MY, Hsiao G, Fong TH, Chou DS, Sheu JR. Expression of amyloid beta peptide in human platelets: pivotal role of the phospholipase Cgamma2-protein kinase C pathway in platelet activation. Pharmacol Res 2008; 57 (02) 151-158
  • 92 Canobbio I, Guidetti GF, Oliviero B. et al. Amyloid β-peptide-dependent activation of human platelets: essential role for Ca2+ and ADP in aggregation and thrombus formation. Biochem J 2014; 462 (03) 513-523
  • 93 Donner L, Fälker K, Gremer L. et al. Platelets contribute to amyloid-β aggregation in cerebral vessels through integrin αIIbβ3-induced outside-in signaling and cluster in release. Sci Signal 2016; 9 (429) ra52
  • 94 Abubaker AA, Vara D, Visconte C. et al. Amyloid peptide β1-42 induces integrin αIIbβ3 activation, platelet adhesion, and thrombus formation in a NADPH oxidase-dependent manner. Oxid Med Cell Longev 2019; 2019: 1050476
  • 95 Sonkar VK, Kulkarni PP, Dash D. Amyloid β peptide stimulates platelet activation through RhoA-dependent modulation of actomyosin organization. FASEB J 2014; 28 (04) 1819-1829
  • 96 Donner L, Toska LM, Krüger I. et al. The collagen receptor glycoprotein VI promotes platelet-mediated aggregation of β-amyloid. Sci Signal 2020; 13 (643) eaba9872
  • 97 Gowert NS, Donner L, Chatterjee M. et al. Blood platelets in the progression of Alzheimer's disease. PLoS One 2014; 9 (02) e90523
  • 98 Chen M, Inestrosa NC, Ross GS, Fernandez HL. Platelets are the primary source of amyloid beta-peptide in human blood. Biochem Biophys Res Commun 1995; 213 (01) 96-103
  • 99 Li QX, Berndt MC, Bush AI. et al. Membrane-associated forms of the beta A4 amyloid protein precursor of Alzheimer's disease in human platelet and brain: surface expression on the activated human platelet. Blood 1994; 84 (01) 133-142
  • 100 Colciaghi F, Marcello E, Borroni B. et al. Platelet APP, ADAM 10 and BACE alterations in the early stages of Alzheimer disease. Neurology 2004; 62 (03) 498-501
  • 101 Johnston JA, Liu WW, Coulson DT. et al. Platelet beta-secretase activity is increased in Alzheimer's disease. Neurobiol Aging 2008; 29 (05) 661-668
  • 102 Manzine PR, de França Bram JM, Barham EJ. et al. ADAM10 as a biomarker for Alzheimer's disease: a study with Brazilian elderly. Dement Geriatr Cogn Disord 2013; 35 (1-2): 58-66
  • 103 Smith CC, Prichard BN, Cooper MB. Platelet alpha- and beta-secretase activities: a preliminary study in normal human subjects. Platelets 2009; 20 (01) 29-34
  • 104 Smirnov A, Trupp A, Henkel AW. et al. Differential processing and secretion of Abeta peptides and sAPPalpha in human platelets is regulated by thrombin and prostaglandine 2. Neurobiol Aging 2009; 30 (10) 1552-1562
  • 105 Sepúlveda C, Hernández B, Burgos CF, Fuentes E, Palomo I, Alarcón M. The cAMP/PKA pathway inhibits beta-amyloid peptide release from human platelets. Neuroscience 2019; 397: 159-171
  • 106 Li QX, Whyte S, Tanner JE, Evin G, Beyreuther K, Masters CL. Secretion of Alzheimer's disease Abeta amyloid peptide by activated human platelets. Lab Invest 1998; 78 (04) 461-469
  • 107 Bush AI, Martins RN, Rumble B. et al. The amyloid precursor protein of Alzheimer's disease is released by human platelets. J Biol Chem 1990; 265 (26) 15977-15983
  • 108 Bu XL, Xiang Y, Jin WS. et al. Blood-derived amyloid-β protein induces Alzheimer's disease pathologies. Mol Psychiatry 2018; 23 (09) 1948-1956
  • 109 Catricala S, Torti M, Ricevuti G. Alzheimer disease and platelets: how's that relevant. Immun Ageing 2012; 9 (01) 20
  • 110 Veitinger M, Varga B, Guterres SB, Zellner M. Platelets, a reliable source for peripheral Alzheimer's disease biomarkers?. Acta Neuropathol Commun 2014; 2: 65
  • 111 Factor SA, Ortof E, Dentinger MP, Mankes R, Barron KD. Platelet morphology in Parkinson's disease: an electron microscopic study. J Neurol Sci 1994; 122 (01) 84-89
  • 112 Koçer A, Yaman A, Niftaliyev E, Dürüyen H, Eryılmaz M, Koçer E. Assessment of platelet indices in patients with neurodegenerative diseases: mean platelet volume was increased in patients with Parkinson's disease. Curr Gerontol Geriatr Res 2013; 2013: 986254
  • 113 Sharma P, Nag D, Atam V, Seth PK, Khanna VK. Platelet aggregation in patients with Parkinson's disease. Stroke 1991; 22 (12) 1607-1608
  • 114 Lim KM, Kim HH, Bae ON. et al. Inhibition of platelet aggregation by 1-methyl-4-phenyl pyridinium ion (MPP+) through ATP depletion: evidence for the reduced platelet activities in Parkinson's disease. Platelets 2009; 20 (03) 163-170
  • 115 Li QX, Campbell BC, McLean CA. et al. Platelet alpha- and gamma-synucleins in Parkinson's disease and normal control subjects. J Alzheimers Dis 2002; 4 (04) 309-315
  • 116 Park SM, Jung HY, Kim HO. et al. Evidence that alpha-synuclein functions as a negative regulator of Ca(++)-dependent alpha-granule release from human platelets. Blood 2002; 100 (07) 2506-2514
  • 117 Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim W, Kell DB. Eryptosis as a marker of Parkinson's disease. Aging (Albany NY) 2014; 6 (10) 788-819
  • 118 Mezger M, Nording H, Sauter R. et al. Platelets and immune responses during thromboinflammation. Rev Front Immunol 2019; 10 (173) 1731
  • 119 Ribeiro LS, Migliari Branco L, Franklin BS. Regulation of innate immune responses by platelets. Front Immunol 2019; 10 (1320): 1320
  • 120 Rawish E, Nording H, Münte T, Langer HF. Platelets as mediators of neuroinflammation and thrombosis. Front Immunol 2020; 11: 548631
  • 121 Sotnikov I, Veremeyko T, Starossom SC, Barteneva N, Weiner HL, Ponomarev ED. Platelets recognize brain-specific glycolipid structures, respond to neurovascular damage and promote neuroinflammation. PLoS One 2013; 8 (03) e58979
  • 122 Bhat SA, Goel R, Shukla R, Hanif K. Platelet CD40L induces activation of astrocytes and microglia in hypertension. Brain Behav Immun 2017; 59: 173-189
  • 123 Dukhinova M, Kuznetsova I, Kopeikina E. et al. Platelets mediate protective neuroinflammation and promote neuronal plasticity at the site of neuronal injury. Brain Behav Immun 2018; 74: 7-27
  • 124 Lai KSP, Liu CS, Rau A. et al. Peripheral inflammatory markers in Alzheimer's disease: a systematic review and meta-analysis of 175 studies. J Neurol Neurosurg Psychiatry 2017; 88 (10) 876-882
  • 125 Shen XN, Niu LD, Wang YJ. et al. Inflammatory markers in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 2019; 90 (05) 590-598
  • 126 Qin XY, Zhang SP, Cao C, Loh YP, Cheng Y. Aberrations in peripheral inflammatory cytokine levels in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol 2016; 73 (11) 1316-1324
  • 127 Ryu JK, Rafalski VA, Meyer-Franke A. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat Immunol 2018; 19 (11) 1212-1223
  • 128 Podolnikova NP, Yakovlev S, Yakubenko VP, Wang X, Gorkun OV, Ugarova TP. The interaction of integrin αIIbβ3 with fibrin occurs through multiple binding sites in the αIIb β-propeller domain. J Biol Chem 2014; 289 (04) 2371-2383
  • 129 Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood 2008; 112 (07) 2780-2786
  • 130 Mammadova-Bach E, Ollivier V, Loyau S. et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood 2015; 126 (05) 683-691
  • 131 Alshehri OM, Hughes CE, Montague S. et al. Fibrin activates GPVI in human and mouse platelets. Blood 2015; 126 (13) 1601-1608
  • 132 van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 2009; 85 (02) 195-204
  • 133 Brown GT, Narayanan P, Li W, Silverstein RL, McIntyre TM. Lipopolysaccharide stimulates platelets through an IL-1β autocrine loop. J Immunol 2013; 191 (10) 5196-5203
  • 134 Anselmo A, Riva F, Gentile S. et al. Expression and function of IL-1R8 (TIR8/SIGIRR): a regulatory member of the IL-1 receptor family in platelets. Cardiovasc Res 2016; 111 (04) 373-384
  • 135 Hottz ED, Lopes JF, Freitas C. et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 2013; 122 (20) 3405-3414
  • 136 Murthy P, Durco F, Miller-Ocuin JL. et al. The NLRP3 inflammasome and bruton's tyrosine kinase in platelets co-regulate platelet activation, aggregation, and in vitro thrombus formation. Biochem Biophys Res Commun 2017; 483 (01) 230-236
  • 137 Qiao J, Wu X, Luo Q. et al. NLRP3 regulates platelet integrin αIIbβ3 outside-in signaling, hemostasis and arterial thrombosis. Haematologica 2018; 103 (09) 1568-1576
  • 138 Rolfes V, Ribeiro LS, Hawwari I. et al. Platelets fuel the inflammasome activation of innate immune cells. Cell Rep 2020; 31 (06) 107615
  • 139 Ponomarev ED. Fresh evidence for platelets as neuronal and innate immune cells: their role in the activation, differentiation, and deactivation of Th1, Th17, and Tregs during tissue inflammation. Front Immunol 2018; 9: 406
  • 140 Starossom SC, Veremeyko T, Yung AW. et al. Platelets play differential role during the initiation and progression of autoimmune neuroinflammation. Circ Res 2015; 117 (09) 779-792
  • 141 Affandi AJ, Silva-Cardoso SC, Garcia S. et al. CXCL4 is a novel inducer of human Th17 cells and correlates with IL-17 and IL-22 in psoriatic arthritis. Eur J Immunol 2018; 48 (03) 522-531
  • 142 Gerdes N, Zhu L, Ersoy M. et al. Platelets regulate CD4+ T-cell differentiation via multiple chemokines in humans. Thromb Haemost 2011; 106 (02) 353-362
  • 143 Zhu L, Huang Z, Stålesen R, Hansson GK, Li N. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation. J Thromb Haemost 2014; 12 (07) 1156-1165
  • 144 Dinkla S, van Cranenbroek B, van der Heijden WA. et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood 2016; 127 (16) 1976-1986
  • 145 Maione F, Cicala C, Liverani E, Mascolo N, Perretti M, D'Acquisto F. IL-17A increases ADP-induced platelet aggregation. Biochem Biophys Res Commun 2011; 408 (04) 658-662
  • 146 Zhang S, Yuan J, Yu M. et al. IL-17A facilitates platelet function through the ERK2 signaling pathway in patients with acute coronary syndrome. PLoS One 2012; 7 (07) e40641
  • 147 Rivera S, García-González L, Khrestchatisky M, Baranger K. Metalloproteinases and their tissue inhibitors in Alzheimer's disease and other neurodegenerative disorders. Cell Mol Life Sci 2019; 76 (16) 3167-3191
  • 148 Gresele P, Falcinelli E, Sebastiano M, Momi S. Matrix metalloproteinases and platelet function. Prog Mol Biol Transl Sci 2017; 147: 133-165
  • 149 Kniewallner KM, Foidl BM, Humpel C. Platelets isolated from an Alzheimer mouse damage healthy cortical vessels and cause inflammation in an organotypic ex vivo brain slice model. Sci Rep 2018; 8 (01) 15483
  • 150 Hochstrasser T, Ehrlich D, Marksteiner J, Sperner-Unterweger B, Humpel C. Matrix metalloproteinase-2 and epidermal growth factor are decreased in platelets of Alzheimer patients. Curr Alzheimer Res 2012; 9 (08) 982-989
  • 151 Chung AW, Radomski A, Alonso-Escolano D. et al. Platelet-leukocyte aggregation induced by PAR agonists: regulation by nitric oxide and matrix metalloproteinases. Br J Pharmacol 2004; 143 (07) 845-855
  • 152 Fernandez-Patron C, Martinez-Cuesta MA, Salas E. et al. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2. Thromb Haemost 1999; 82 (06) 1730-1735
  • 153 Choi WS, Jeon OH, Kim HH, Kim DS. MMP-2 regulates human platelet activation by interacting with integrin alphaIIbbeta3. J Thromb Haemost 2008; 6 (03) 517-523
  • 154 Radomski A, Stewart MW, Jurasz P, Radomski MW. Pharmacological characteristics of solid-phase von Willebrand factor in human platelets. Br J Pharmacol 2001; 134 (05) 1013-1020
  • 155 Soslau G, Mason C, Lynch S. et al. Intracellular matrix metalloproteinase-2 (MMP-2) regulates human platelet activation via hydrolysis of talin. Thromb Haemost 2014; 111 (01) 140-153
  • 156 Choi WS, Jeon OH, Kim DS. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb Haemost 2010; 8 (06) 1364-1371
  • 157 Sebastiano M, Momi S, Falcinelli E, Bury L, Hoylaerts MF, Gresele P. A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling. Blood 2017; 129 (07) 883-895
  • 158 Trivedi V, Boire A, Tchernychev B. et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell 2009; 137 (02) 332-343
  • 159 Sheu JR, Fong TH, Liu CM. et al. Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies. Br J Pharmacol 2004; 143 (01) 193-201
  • 160 Lee YM, Lee JJ, Shen MY, Hsiao G, Sheu JR. Inhibitory mechanisms of activated matrix metalloproteinase-9 on platelet activation. Eur J Pharmacol 2006; 537 (1-3): 52-58
  • 161 Kouli A, Horne CB, Williams-Gray CH. Toll-like receptors and their therapeutic potential in Parkinson's disease and α-synucleinopathies. Brain Behav Immun 2019; 81: 41-51
  • 162 Momtazmanesh S, Perry G, Rezaei N. Toll-like receptors in Alzheimer's disease. J Neuroimmunol 2020; 348: 577362
  • 163 Campanella C, Pace A, Caruso Bavisotto C. et al. Heat shock proteins in Alzheimer's disease: role and targeting. Int J Mol Sci 2018; 19 (09) 2603
  • 164 Angelopoulou E, Piperi C, Papavassiliou AG. High-mobility group box 1 in Parkinson's disease: from pathogenesis to therapeutic approaches. J Neurochem 2018; 146 (03) 211-218
  • 165 Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF. Impact of HMGB1, RAGE, and TLR4 in Alzheimer's Disease (AD): from risk factors to therapeutic targeting. Cells 2020; 9 (02) 383
  • 166 Cognasse F, Nguyen KA, Damien P. et al. The inflammatory role of platelets via their TLRs and Siglec receptors. Front Immunol 2015; 6: 83
  • 167 Clark SR, Ma AC, Tavener SA. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 168 Cognasse F, Hamzeh-Cognasse H, Lafarge S. et al. Toll-like receptor 4 ligand can differentially modulate the release of cytokines by human platelets. Br J Haematol 2008; 141 (01) 84-91
  • 169 Berthet J, Damien P, Hamzeh-Cognasse H. et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin Immunol 2012; 145 (03) 189-200
  • 170 Cognasse F, Lafarge S, Chavarin P, Acquart S, Garraud O. Lipopolysaccharide induces sCD40L release through human platelets TLR4, but not TLR2 and TLR9. Intensive Care Med 2007; 33 (02) 382-384
  • 171 Assinger A, Laky M, Badrnya S, Esfandeyari A, Volf I. Periodontopathogens induce expression of CD40L on human platelets via TLR2 and TLR4. Thromb Res 2012; 130 (03) e73-e78
  • 172 Jerez-Dolz D, Torramade-Moix S, Palomo M. et al. Internalization of microparticles by platelets is partially mediated by toll-like receptor 4 and enhances platelet thrombogenicity. Atherosclerosis 2020; 294: 17-24
  • 173 Hally K, Fauteux-Daniel S, Hamzeh-Cognasse H, Larsen P, Cognasse F. Revisiting platelets and toll-like receptors (TLRs): at the interface of vascular immunity and thrombosis. Int J Mol Sci 2020; 21 (17) 6150
  • 174 Chang R, Yee KL, Sumbria RK. Tumor necrosis factor α inhibition for Alzheimer's disease. J Cent Nerv Syst Dis 2017; 9: 1179573517709278
  • 175 Manfredi AA, Baldini M, Camera M. et al. Anti-TNFα agents curb platelet activation in patients with rheumatoid arthritis. Ann Rheum Dis 2016; 75 (08) 1511-1520
  • 176 Page MJ, Bester J, Pretorius E. The inflammatory effects of TNF-α and complement component 3 on coagulation. Sci Rep 2018; 8 (01) 1812
  • 177 Pignatelli P, De Biase L, Lenti L. et al. Tumor necrosis factor-alpha as trigger of platelet activation in patients with heart failure. Blood 2005; 106 (06) 1992-1994
  • 178 Pignatelli P, Cangemi R, Celestini A. et al. Tumour necrosis factor alpha upregulates platelet CD40L in patients with heart failure. Cardiovasc Res 2008; 78 (03) 515-522
  • 179 Naime ACA, Bonfitto PHL, Solon C. et al. Tumor necrosis factor alpha has a crucial role in increased reactive oxygen species production in platelets of mice injected with lipopolysaccharide. Platelets 2019; 30 (08) 1047-1052
  • 180 Pircher J, Merkle M, Wörnle M. et al. Prothrombotic effects of tumor necrosis factor alpha in vivo are amplified by the absence of TNF-alpha receptor subtype 1 and require TNF-alpha receptor subtype 2. Arthritis Res Ther 2012; 14 (05) R225
  • 181 Bonfitto PHL, Naime ACA, Lopes-Pires ME. et al. Platelet activity is negatively modulated by tumor necrosis factor alpha through reductions of cytosolic calcium levels and integrin alphaIIbbeta3 phosphorylation. Thromb Res 2018; 172: 44-50
  • 182 Davizon-Castillo P, McMahon B, Aguila S. et al. TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood 2019; 134 (09) 727-740
  • 183 Assinger A. Platelets and infection—an emerging role of platelets in viral infection. Front Immunol 2014; 5: 649
  • 184 Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections—complex interactions with bacteria. Rev Front Immunol 2015; 6 (82) 82
  • 185 Hottz ED, Bozza FA, Bozza PT. Platelets in immune response to virus and immunopathology of viral infections. Front Med (Lausanne) 2018; 5: 121
  • 186 Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 2014; 12 (06) 426-437
  • 187 Page MJ, Pretorius E. A champion of host defense: a generic large-scale cause for platelet dysfunction and depletion in infection. Semin Thromb Hemost 2020; 46 (03) 302-319
  • 188 Wong CH, Jenne CN, Petri B, Chrobok NL, Kubes P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 2013; 14 (08) 785-792
  • 189 Verschoor A, Neuenhahn M, Navarini AA. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12 (12) 1194-1201
  • 190 Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh L. On the role of platelet-generated amyloid beta peptides in certain amyloidosis health complications. Front Immunol 2020; 11: 571083
  • 191 Lopes Pires ME, Clarke SR, Marcondes S, Gibbins JM. Lipopolysaccharide potentiates platelet responses via toll-like receptor 4-stimulated Akt-Erk-PLA2 signalling. PLoS One 2017; 12 (11) e0186981
  • 192 Feng G, Yang X, Li Y, Wang X, Tan S, Chen F. LPS enhances platelets aggregation via TLR4, which is related to mitochondria damage caused by intracellular ROS, but not extracellular ROS. Cell Immunol 2018; 328: 86-92
  • 193 Lourbakos A, Yuan YP, Jenkins AL. et al. Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 2001; 97 (12) 3790-3797
  • 194 Pham K, Feik D, Hammond BF, Rams TE, Whitaker EJ. Aggregation of human platelets by gingipain-R from Porphyromonas gingivalis cells and membrane vesicles. Platelets 2002; 13 (01) 21-30
  • 195 Klarström Engström K, Khalaf H, Kälvegren H, Bengtsson T. The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation. Mol Oral Microbiol 2015; 30 (01) 62-73
  • 196 Thornton P, McColl BW, Greenhalgh A, Denes A, Allan SM, Rothwell NJ. Platelet interleukin-1alpha drives cerebrovascular inflammation. Blood 2010; 115 (17) 3632-3639
  • 197 Giles JA, Greenhalgh AD, Denes A. et al. Neutrophil infiltration to the brain is platelet-dependent, and is reversed by blockade of platelet GPIbα. Immunology 2018; 154 (02) 322-328
  • 198 Sreeramkumar V, Adrover JM, Ballesteros I. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 2014; 346 (6214): 1234-1238
  • 199 Imhof BA, Jemelin S, Ballet R. et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A 2016; 113 (33) E4847-E4856
  • 200 Fang W, Geng X, Deng Y. et al. Platelet activating factor induces blood brain barrier permeability alteration in vitro. J Neuroimmunol 2011; 230 (1-2): 42-47
  • 201 Fang W, Zhang R, Sha L. et al. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain. J Neurochem 2014; 128 (05) 662-671
  • 202 Gao C, Wang H, Wang T. et al. Platelet regulates neuroinflammation and restores blood-brain barrier integrity in a mouse model of traumatic brain injury. J Neurochem 2020; 154 (02) 190-204
  • 203 Kniewallner KM, Wenzel D, Humpel C. Thiazine Red(+) platelet inclusions in cerebral blood vessels are first signs in an Alzheimer's Disease mouse model. Sci Rep 2016; 6: 28447
  • 204 Kucheryavykh LY, Dávila-Rodríguez J, Rivera-Aponte DE. et al. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis. Brain Res Bull 2017; 128: 98-105
  • 205 Davies TA, Billingslea AM, Long HJ. et al. Brain endothelial cell enzymes cleave platelet-retained amyloid precursor protein. J Lab Clin Med 1998; 132 (04) 341-350
  • 206 Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately?. Blood 2009; 114 (12) 2367-2374
  • 207 Canobbio I, Visconte C, Momi S. et al. Platelet amyloid precursor protein is a modulator of venous thromboembolism in mice. Blood 2017; 130 (04) 527-536
  • 208 Xu F, Davis J, Miao J. et al. Protease nexin-2/amyloid beta-protein precursor limits cerebral thrombosis. Proc Natl Acad Sci U S A 2005; 102 (50) 18135-18140
  • 209 Hur WS, Juang LJ, Mazinani N, Munro L, Jefferies WA, Kastrup CJ. Post-translational modifications of platelet-derived amyloid precursor protein by coagulation factor XIII-A. Biochemistry 2020; 59 (46) 4449-4455
  • 210 Maki T, Okamoto Y, Carare RO. et al. Phosphodiesterase III inhibitor promotes drainage of cerebrovascular β-amyloid. Ann Clin Transl Neurol 2014; 1 (08) 519-533
  • 211 Arai H, Takahashi T. A combination therapy of donepezil and cilostazol for patients with moderate Alzheimer disease: pilot follow-up study. Am J Geriatr Psychiatry 2009; 17 (04) 353-354
  • 212 Sakurai H, Hanyu H, Sato T. et al. Effects of cilostazol on cognition and regional cerebral blood flow in patients with Alzheimer's disease and cerebrovascular disease: a pilot study. Geriatr Gerontol Int 2013; 13 (01) 90-97
  • 213 Tai SY, Chen CH, Chien CY, Yang YH. Cilostazol as an add-on therapy for patients with Alzheimer's disease in Taiwan: a case control study. BMC Neurol 2017; 17 (01) 40
  • 214 Park SH, Kim JH, Bae SS. et al. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid β-induced cognitive deficits associated with decreased amyloid β accumulation. Biochem Biophys Res Commun 2011; 408 (04) 602-608
  • 215 Hedya SA, Safar MM, Bahgat AK. Cilostazol mediated Nurr1 and autophagy enhancement: neuroprotective activity in rat rotenone PD model. Mol Neurobiol 2018; 55 (09) 7579-7587
  • 216 Bentham P, Gray R, Sellwood E, Hills R, Crome P, Raftery J. AD2000 Collaborative Group. Aspirin in Alzheimer's disease (AD2000): a randomised open-label trial. Lancet Neurol 2008; 7 (01) 41-49
  • 217 Hattori Y, Maki T, Saito S, Yamamoto Y, Nagatsuka K, Ihara M. Influence of low-dose aspirin on cerebral amyloid angiopathy in mice. J Alzheimers Dis 2016; 52 (03) 1037-1045
  • 218 Skovronsky DM, Lee VM, Praticò D. Amyloid precursor protein and amyloid beta peptide in human platelets. Role of cyclooxygenase and protein kinase C. J Biol Chem 2001; 276 (20) 17036-17043
  • 219 Thomas T, Nadackal TG, Thomas K. Aspirin and non-steroidal anti-inflammatory drugs inhibit amyloid-beta aggregation. Neuroreport 2001; 12 (15) 3263-3267
  • 220 Chandra S, Jana M, Pahan K. Aspirin induces lysosomal biogenesis and attenuates amyloid plaque pathology in a mouse model of Alzheimer's disease via PPARα. J Neurosci 2018; 38 (30) 6682-6699
  • 221 Patel D, Roy A, Kundu M. et al. Aspirin binds to PPARα to stimulate hippocampal plasticity and protect memory. Proc Natl Acad Sci U S A 2018; 115 (31) E7408-E7417
  • 222 Gagne JJ, Power MC. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 2010; 74 (12) 995-1002
  • 223 Gao X, Chen H, Schwarzschild MA, Ascherio A. Use of ibuprofen and risk of Parkinson disease. Neurology 2011; 76 (10) 863-869
  • 224 Rangasamy SB, Dasarathi S, Pahan P, Jana M, Pahan K. Low-dose aspirin upregulates tyrosine hydroxylase and increases dopamine production in dopaminergic neurons: implications for Parkinson's disease. J Neuroimmune Pharmacol 2019; 14 (02) 173-187
  • 225 San Luciano M, Tanner CM, Meng C. et al; Michael J. Fox Foundation LRRK2 Cohort Consortium. Nonsteroidal anti-inflammatory use and LRRK2 Parkinson's disease penetrance. Mov Disord 2020; 35 (10) 1755-1764
  • 226 Zaldivia MTK, McFadyen JD, Lim B, Wang X, Peter K. Platelet-derived microvesicles in cardiovascular diseases. Rev Front Cardiovasc Med 2017; 4 (74) 74
  • 227 Gonçalves GS, Duarte RCF, Campos FMF. et al. Elevated platelet microparticles levels are associated with lipidic oxidation and inflammatory profiles in Alzheimer's disease. Eur Geriatr Med 2016; 7 (04) 352-359
  • 228 Nomura S, Komiyama Y, Miyake T. et al. Amyloid beta-protein precursor-rich platelet microparticles in thrombotic disease. Thromb Haemost 1994; 72 (04) 519-522
  • 229 Matsubara E, Shoji M, Murakami T, Abe K, Frangione B, Ghiso J. Platelet microparticles as carriers of soluble Alzheimer's amyloid beta (sAbeta). Ann N Y Acad Sci 2002; 977: 340-348
  • 230 Magalhães CA, Campos FM, Loures CMG. et al. Microparticles are related to cognitive and functional status from normal aging to dementia. J Neuroimmunol 2019; 336: 577027
  • 231 Laske C, Stellos K, Kempter I. et al. Increased cerebrospinal fluid calpain activity and microparticle levels in Alzheimer's disease. Alzheimers Dement 2015; 11 (05) 465-474
  • 232 Hosseinzadeh S, Noroozian M, Mortaz E, Mousavizadeh K. Plasma microparticles in Alzheimer's disease: the role of vascular dysfunction. Metab Brain Dis 2018; 33 (01) 293-299
  • 233 Hosseinzadeh S, Zahmatkesh M, Zarrindast MR, Hassanzadeh GR, Karimian M, Sarrafnejad A. Elevated CSF and plasma microparticles in a rat model of streptozotocin-induced cognitive impairment. Behav Brain Res 2013; 256: 503-511
  • 234 Merlini M, Rafalski VA, Rios Coronado PE. et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer's disease model. Neuron 2019; 101 (06) 1099-1108.e6
  • 235 Zhou Z, Liang Y, Zhang X. et al. Fibrinogen and risk of dementia: a systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 112: 353-360
  • 236 Wong KT, Grove JS, Grandinetti A. et al. Association of fibrinogen with Parkinson disease in elderly Japanese-American men: a prospective study. Neuroepidemiology 2010; 34 (01) 50-54
  • 237 Lu W, Wan X, Liu B. et al. Specific changes of serum proteins in Parkinson's disease patients. PLoS One 2014; 9 (04) e95684
  • 238 Maarouf CL, Beach TG, Adler CH. et al; Arizona PD Consortium. Cerebrospinal fluid biomarkers of neuropathologically diagnosed Parkinson's disease subjects. Neurol Res 2012; 34 (07) 669-676
  • 239 Halle A, Hornung V, Petzold GC. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 2008; 9 (08) 857-865
  • 240 Lučiūnaitė A, McManus RM, Jankunec M. et al. Soluble Aβ oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. J Neurochem 2020; 155 (06) 650-661
  • 241 Heneka MT, Kummer MP, Stutz A. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 2013; 493 (7434): 674-678
  • 242 Saresella M, La Rosa F, Piancone F. et al. The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer's disease. Mol Neurodegener 2016; 11: 23
  • 243 Venegas C, Kumar S, Franklin BS. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature 2017; 552 (7685): 355-361
  • 244 Stancu IC, Cremers N, Vanrusselt H. et al. Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously seeded and non-exogenously seeded Tau pathology in vivo. Acta Neuropathol 2019; 137 (04) 599-617
  • 245 Ising C, Venegas C, Zhang S. et al. NLRP3 inflammasome activation drives tau pathology. Nature 2019; 575 (7784): 669-673
  • 246 Codolo G, Plotegher N, Pozzobon T. et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One 2013; 8 (01) e55375
  • 247 Mao Z, Liu C, Ji S. et al. The NLRP3 inflammasome is involved in the pathogenesis of Parkinson's disease in rats. Neurochem Res 2017; 42 (04) 1104-1115
  • 248 Gordon R, Albornoz EA, Christie DC. et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med 2018; 10 (465) eaah4066
  • 249 Chatterjee K, Roy A, Banerjee R. et al. Inflammasome and α-synuclein in Parkinson's disease: a cross-sectional study. J Neuroimmunol 2020; 338: 577089
  • 250 Fan Z, Pan YT, Zhang ZY. et al. Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson's disease. J Neuroinflammation 2020; 17 (01) 11
  • 251 Browne TC, McQuillan K, McManus RM, O'Reilly JA, Mills KH, Lynch MA. IFN-γ production by amyloid β-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J Immunol 2013; 190 (05) 2241-2251
  • 252 McManus RM, Higgins SC, Mills KH, Lynch MA. Respiratory infection promotes T cell infiltration and amyloid-β deposition in APP/PS1 mice. Neurobiol Aging 2014; 35 (01) 109-121
  • 253 Zhang J, Ke KF, Liu Z, Qiu YH, Peng YP. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of aβ1-42-induced Alzheimer's disease model rats. PLoS One 2013; 8 (10) e75786
  • 254 Oberstein TJ, Taha L, Spitzer P. et al. Imbalance of circulating Th17 and regulatory T cells in Alzheimer's disease: a case control study. Front Immunol 2018; 9: 1213
  • 255 St-Amour I, Bosoi CR, Paré I. et al. Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2019; 16 (01) 3
  • 256 Sommer A, Marxreiter F, Krach F. et al. Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson's disease. Cell Stem Cell 2018; 23 (01) 123-131.e6
  • 257 Chen S, Liu Y, Niu Y. et al. Increased abundance of myeloid-derived suppressor cells and Th17 cells in peripheral blood of newly-diagnosed Parkinson's disease patients. Neurosci Lett 2017; 648: 21-25
  • 258 Kustrimovic N, Comi C, Magistrelli L. et al. Parkinson's disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J Neuroinflammation 2018; 15 (01) 205
  • 259 Dutta D, Kundu M, Mondal S. et al. RANTES-induced invasion of Th17 cells into substantia nigra potentiates dopaminergic cell loss in MPTP mouse model of Parkinson's disease. Neurobiol Dis 2019; 132: 104575
  • 260 Stomrud E, Björkqvist M, Janciauskiene S, Minthon L, Hansson O. Alterations of matrix metalloproteinases in the healthy elderly with increased risk of prodromal Alzheimer's disease. Alzheimers Res Ther 2010; 2 (03) 20
  • 261 Peng M, Jia J, Qin W. Plasma gelsolin and matrix metalloproteinase 3 as potential biomarkers for Alzheimer disease. Neurosci Lett 2015; 595: 116-121
  • 262 Hernandez-Guillamon M, Mawhirt S, Blais S. et al. Sequential amyloid-β degradation by the matrix metalloproteases MMP-2 and MMP-9. J Biol Chem 2015; 290 (24) 15078-15091
  • 263 Nübling G, Levin J, Bader B. et al. Limited cleavage of tau with matrix-metalloproteinase MMP-9, but not MMP-3, enhances tau oligomer formation. Exp Neurol 2012; 237 (02) 470-476
  • 264 Terni B, Ferrer I. Abnormal expression and distribution of MMP2 at initial stages of Alzheimer's disease-related pathology. J Alzheimers Dis 2015; 46 (02) 461-469
  • 265 Chung YC, Kim YS, Bok E, Yune TY, Maeng S, Jin BK. MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson's disease. Mediators Inflamm 2013; 2013: 370526
  • 266 Choi DH, Kim YJ, Kim YG, Joh TH, Beal MF, Kim YS. Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death. J Biol Chem 2011; 286 (16) 14168-14177
  • 267 Oh SH, Kim HN, Park HJ, Shin JY, Kim DY, Lee PH. The cleavage effect of mesenchymal stem cell and its derived matrix metalloproteinase-2 on extracellular α-synuclein aggregates in Parkinsonian Models. Stem Cells Transl Med 2017; 6 (03) 949-961
  • 268 Kim YS, Choi DH, Block ML. et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 2007; 21 (01) 179-187
  • 269 Choi DH, Kim EM, Son HJ. et al. A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J Neurochem 2008; 106 (01) 405-415
  • 270 Kim EM, Shin EJ, Choi JH. et al. Matrix metalloproteinase-3 is increased and participates in neuronal apoptotic signaling downstream of caspase-12 during endoplasmic reticulum stress. J Biol Chem 2010; 285 (22) 16444-16452
  • 271 Kim J, Jeong YH, Lee EJ, Park JS, Seo H, Kim HS. Suppression of neuroinflammation by matrix metalloproteinase-8 inhibitor in aged normal and LRRK2 G2019S Parkinson's disease model mice challenged with lipopolysaccharide. Biochem Biophys Res Commun 2017; 493 (02) 879-886
  • 272 Rangasamy SB, Jana M, Roy A. et al. Selective disruption of TLR2-MyD88 interaction inhibits inflammation and attenuates Alzheimer's pathology. J Clin Invest 2018; 128 (10) 4297-4312
  • 273 Zhou C, Sun X, Hu Y. et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY) 2019; 11 (17) 7257-7273
  • 274 Calvo-Rodríguez M, de la Fuente C, García-Durillo M, García-Rodríguez C, Villalobos C, Núñez L. Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. J Neuroinflammation 2017; 14 (01) 24
  • 275 Fujita K, Motoki K, Tagawa K. et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep 2016; 6: 31895
  • 276 Zhou J, Yu W, Zhang M, Tian X, Li Y, Lü Y. Imbalance of microglial TLR4/TREM2 in LPS-treated APP/PS1 transgenic mice: a potential link between Alzheimer's disease and systemic inflammation. Neurochem Res 2019; 44 (05) 1138-1151
  • 277 Cui W, Sun C, Ma Y, Wang S, Wang X, Zhang Y. Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer's disease. Front Neurosci 2020; 14: 444
  • 278 Lax N, Fainstein N, Nishri Y, Ben-Zvi A, Ben-Hur T. Systemic microbial TLR2 agonists induce neurodegeneration in Alzheimer's disease mice. J Neuroinflammation 2020; 17 (01) 55
  • 279 Dzamko N, Gysbers A, Perera G. et al. Toll-like receptor 2 is increased in neurons in Parkinson's disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 2017; 133 (02) 303-319
  • 280 Yang Y, Han C, Guo L, Guan Q. High expression of the HMGB1-TLR4 axis and its downstream signaling factors in patients with Parkinson's disease and the relationship of pathological staging. Brain Behav 2018; 8 (04) e00948
  • 281 Kim C, Spencer B, Rockenstein E. et al. Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating α-synuclein transmission and neuroinflammation. Mol Neurodegener 2018; 13 (01) 43
  • 282 Shao QH, Chen Y, Li FF. et al. TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson's disease. Acta Pharmacol Sin 2019; 40 (12) 1503-1512
  • 283 Campolo M, Paterniti I, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson's diseases in vivo model. Brain Behav Immun 2019; 76: 236-247
  • 284 Xu W, Zheng D, Liu Y, Li J, Yang L, Shang X. Glaucocalyxin B alleviates lipopolysaccharide-induced Parkinson's disease by inhibiting TLR/NF-κB and activating Nrf2/HO-1 pathway. Cell Physiol Biochem 2017; 44 (06) 2091-2104
  • 285 Yang J, Jia M, Zhang X, Wang P. Calycosin attenuates MPTP-induced Parkinson's disease by suppressing the activation of TLR/NF-κB and MAPK pathways. Phytother Res 2019; 33 (02) 309-318
  • 286 Cheng C, Zhu X. Cordycepin mitigates MPTP-induced Parkinson's disease through inhibiting TLR/NF-κB signaling pathway. Life Sci 2019; 223: 120-127
  • 287 Koo JH, Jang YC, Hwang DJ. et al. Treadmill exercise produces neuroprotective effects in a murine model of Parkinson's disease by regulating the TLR2/MyD88/NF-κB signaling pathway. Neuroscience 2017; 356: 102-113
  • 288 Perez-Pardo P, Dodiya HB, Engen PA. et al. Role of TLR4 in the gut-brain axis in Parkinson's disease: a translational study from men to mice. Gut 2019; 68 (05) 829-843
  • 289 Sun MF, Zhu YL, Zhou ZL. et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 2018; 70: 48-60
  • 290 Paouri E, Tzara O, Kartalou GI, Zenelak S, Georgopoulos S. Peripheral tumor necrosis factor-alpha (TNF-α) modulates amyloid pathology by regulating blood-derived immune cells and glial response in the brain of AD/TNF transgenic mice. J Neurosci 2017; 37 (20) 5155-5171
  • 291 Contreras JA, Aslanyan V, Sweeney MD. et al. Functional connectivity among brain regions affected in Alzheimer's disease is associated with CSF TNF-α in APOE4 carriers. Neurobiol Aging 2020; 86: 112-122
  • 292 Ekert JO, Gould RL, Reynolds G, Howard RJ. TNF alpha inhibitors in Alzheimer's disease: a systematic review. Int J Geriatr Psychiatry 2018; 33 (05) 688-694
  • 293 Steeland S, Gorlé N, Vandendriessche C. et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer's disease. EMBO Mol Med 2018; 10 (04) e8300
  • 294 Karpenko MN, Vasilishina AA, Gromova EA, Muruzheva ZM, Miliukhina IV, Bernadotte A. Interleukin-1β, interleukin-1 receptor antagonist, interleukin-6, interleukin-10, and tumor necrosis factor-α levels in CSF and serum in relation to the clinical diversity of Parkinson's disease. Cell Immunol 2018; 327: 77-82
  • 295 Kouchaki E, Kakhaki RD, Tamtaji OR. et al. Increased serum levels of TNF-α and decreased serum levels of IL-27 in patients with Parkinson disease and their correlation with disease severity. Clin Neurol Neurosurg 2018; 166: 76-79
  • 296 Barnum CJ, Chen X, Chung J. et al. Peripheral administration of the selective inhibitor of soluble tumor necrosis factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats. J Parkinsons Dis 2014; 4 (03) 349-360
  • 297 Peter I, Dubinsky M, Bressman S. et al. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol 2018; 75 (08) 939-946
  • 298 Zhang R, Miller RG, Gascon R. et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 2009; 206 (1-2): 121-124
  • 299 Zhao Y, Jaber V, Lukiw WJ. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer's disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol 2017; 7: 318
  • 300 Zhao Y, Cong L, Lukiw WJ. Lipopolysaccharide (LPS) accumulates in neocortical neurons of Alzheimer's disease (AD) brain and impairs transcription in human neuronal-glial primary co-cultures. Front Aging Neurosci 2017; 9: 407
  • 301 Zhao Y, Cong L, Jaber V, Lukiw WJ. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer's disease brain. Front Immunol 2017; 8: 1064
  • 302 Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 2016; 87 (22) 2324-2332
  • 303 Lee JW, Lee YK, Yuk DY. et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008;5(01):
  • 304 Zhao J, Bi W, Xiao S. et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 2019; 9 (01) 5790
  • 305 André P, Samieri C, Buisson C. et al. Lipopolysaccharide-binding protein, soluble CD14, and the long-term risk of Alzheimer's disease: a nested case-control pilot study of older community dwellers from the three-city cohort. J Alzheimers Dis 2019; 71 (03) 751-761
  • 306 Wang LM, Wu Q, Kirk RA. et al. Lipopolysaccharide endotoxemia induces amyloid-β and p-tau formation in the rat brain. Am J Nucl Med Mol Imaging 2018; 8 (02) 86-99
  • 307 Tanji K, Mori F, Imaizumi T. et al. Upregulation of alpha-synuclein by lipopolysaccharide and interleukin-1 in human macrophages. Pathol Int 2002; 52 (09) 572-577
  • 308 Kelly LP, Carvey PM, Keshavarzian A. et al. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson's disease. Mov Disord 2014; 29 (08) 999-1009
  • 309 Qin L, Liu Y, Hong JS, Crews FT. NADPH oxidase and aging drive microglial activation, oxidative stress, and dopaminergic neurodegeneration following systemic LPS administration. Glia 2013; 61 (06) 855-868
  • 310 Wang W, Nguyen LT, Burlak C. et al. Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein. Proc Natl Acad Sci U S A 2016; 113 (34) 9587-9592
  • 311 Kim C, Lv G, Lee JS. et al. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Sci Rep 2016; 6: 30891
  • 312 Bhattacharyya D, Mohite GM, Krishnamoorthy J. et al. Lipopolysaccharide from gut microbiota modulates α-synuclein aggregation and alters its biological function. ACS Chem Neurosci 2019; 10 (05) 2229-2236
  • 313 Huo J, Cui Q, Yang W, Guo W. LPS induces dopamine depletion and iron accumulation in substantia nigra in rat models of Parkinson's disease. Int J Clin Exp Pathol 2018; 11 (10) 4942-4949
  • 314 Yan A, Liu Z, Song L. et al. Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson's disease mice. Front Cell Neurosci 2019; 12: 529
  • 315 Huang B, Liu J, Meng T. et al. Polydatin prevents lipopolysaccharide (LPS)-induced Parkinson's disease via regulation of the AKT/GSK3β-Nrf2/NF-κB signaling axis. Front Immunol 2018; 9: 2527
  • 316 Liu YL, Hsu CC, Huang HJ, Chang CJ, Sun SH, Lin AM. Gallic acid attenuated LPS-induced neuroinflammation: protein aggregation and necroptosis. Mol Neurobiol 2020; 57 (01) 96-104
  • 317 Dominy SS, Lynch C, Ermini F. et al. Porphyromonas gingivalis in Alzheimer's disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 2019; 5 (01) eaau3333
  • 318 Ilievski V, Zuchowska PK, Green SJ. et al. Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One 2018; 13 (10) e0204941
  • 319 Haditsch U, Roth T, Rodriguez L. et al. Alzheimer's disease-like neurodegeneration in Porphyromonas gingivalis infected neurons with persistent expression of active gingipains. J Alzheimers Dis 2020; 75 (04) 1361-1376
  • 320 Tzeng NS, Chung CH, Lin FH. et al. Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections—a Nationwide, Population-Based Cohort Study in Taiwan. Neurotherapeutics 2018; 15 (02) 417-429
  • 321 Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB. Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett 2007; 429 (2-3): 95-100
  • 322 Piacentini R, Civitelli L, Ripoli C. et al. HSV-1 promotes Ca2+ -mediated APP phosphorylation and Aβ accumulation in rat cortical neurons. Neurobiol Aging 2011; 32 (12) 2323.e13-2323.e26
  • 323 Wozniak MA, Frost AL, Itzhaki RF. Alzheimer's disease-specific tau phosphorylation is induced by herpes simplex virus type 1. J Alzheimers Dis 2009; 16 (02) 341-350
  • 324 Alvarez G, Aldudo J, Alonso M, Santana S, Valdivieso F. Herpes simplex virus type 1 induces nuclear accumulation of hyperphosphorylated tau in neuronal cells. J Neurosci Res 2012; 90 (05) 1020-1029
  • 325 Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer's disease amyloid plaques. J Pathol 2009; 217 (01) 131-138
  • 326 Bourgade K, Le Page A, Bocti C. et al. Protective effect of amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model. J Alzheimers Dis 2016; 50 (04) 1227-1241
  • 327 Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK. et al. Alzheimer's disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 2018; 99 (01) 56-63.e3
  • 328 Caggiu E, Paulus K, Arru G, Piredda R, Sechi GP, Sechi LA. Humoral cross reactivity between α-synuclein and herpes simplex-1 epitope in Parkinson's disease, a triggering role in the disease?. J Neuroimmunol 2016; 291: 110-114
  • 329 Caggiu E, Paulus K, Galleri G. et al. Homologous HSV1 and alpha-synuclein peptides stimulate a T cell response in Parkinson's disease. J Neuroimmunol 2017; 310: 26-31
  • 330 Mezger M, Göbel K, Kraft P, Meuth SG, Kleinschnitz C, Langer HF. Platelets and vascular inflammation of the brain. Hamostaseologie 2015; 35 (03) 244-251