Synlett 2022; 33(08): 699-704
DOI: 10.1055/s-0041-1737802
synpacts

Ring-Expansion Metathesis Polymerization Initiator Design for the Synthesis of Cyclic Polymers

,
We thank the University of Washington for generous startup funds. This material is based in part upon work supported by the state of Washington through the University of Washington Clean Energy Institute by way of a graduate fellowship to C.M.M.


Abstract

Cyclic polymers are of increasing interest to the synthetic and physical polymer communities due to their unique structures that lack chain ends. This topological distinction results in decreased chain entanglement, lower intrinsic viscosity, and smaller hydrodynamic radii. Many methods for the production of cyclic polymers exist, however, large-scale production of architecturally pure cyclic polymers is challenging. Ring-expansion metathesis polymerization (REMP) is an increasingly promising method to produce cyclic polymers because of the mild and scalable reaction conditions. Herein, a brief history of REMP for the synthesis of cyclic polymers with both ruthenium and non-ruthenium initiators is discussed. Even though REMP is a promising method for synthesizing cyclic polymers, state-of-the-art methods still struggle with poor molar mass control, slow polymerization rates, low conversion, and poor initiator stability. To combat these challenges, our group has developed a tethered ruthenium-benzylidene initiator, CB6, which utilizes design features from ubiquitous Grubbs-type initiators used in linear polymerizations. These structural modifications are shown to improve initiator kinetics, enhance initiator stability, and increase control over the molar mass of the resulting cyclic polymers.

1 Introduction

2 Ring-Expansion Metathesis Polymerization (REMP) with Ruthenium Initiators

3 New Developments in Ruthenium Ring-Expansion Metathesis (REMP) Initiator Design

4 Ring-Expansion Metathesis Polymerization (REMP) with Non-Ruthenium Initiators

5 Conclusions



Publikationsverlauf

Eingereicht: 12. Oktober 2021

Angenommen nach Revision: 14. Dezember 2021

Artikel online veröffentlicht:
25. Januar 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Haque FM, Grayson SM. Nat. Chem. 2020; 12: 433
  • 2 Schappacher M, Deffieux A. Science 2008; 319: 1512
  • 3 Wang T, Golder MR. Polym. Chem. 2021; 12: 958
  • 4 Bielawski CW, Benitez D, Grubbs RH. Science 2002; 297: 2041
  • 5 Fürstner A, Ackermann L, Gabor B, Goddard R, Lehmann CW, Mynott R, Stelzer F, Thiel OR. Chem. Eur. J. 2001; 7: 3236
  • 6 Fürstner A, Krause H, Ackermann L, Lehmann CW. Chem. Commun. 2001; 2240
  • 7 Edwards JP, Wolf WJ, Grubbs RH. J. Polym. Sci., Part A: Polym. Chem. 2019; 57: 228
  • 8 Ogba OM, Warner NC, O’Leary DJ, Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
  • 9 Boydston AJ, Xia Y, Kornfield JA, Gorodetskaya IA, Grubbs RH. J. Am. Chem. Soc. 2008; 130: 12775
  • 10 Vougioukalakis GC, Grubbs RH. Chem. Eur. J. 2008; 14: 7545
  • 11 Xia Y, Boydston JA, Yao Y, Kornfield AJ, Gorodetskaya AI, Spiess WH, Grubbs RH. J. Am. Chem. Soc. 2009; 131: 2670
  • 12 Song K, Kim K, Hong D, Kim J, Heo CE, Kim HI, Hong SH. Nat. Commun. 2019; 10: 3680
  • 13 Boydston AJ, Holcombe TW, Unruh DA, Fréchet JM. J, Grubbs RH. J. Am. Chem. Soc. 2009; 131: 5388
  • 14 Xia Y, Boydston AJ, Grubbs RH. Angew. Chem. Int. Ed. 2011; 50: 5882
  • 15 Zhang K, Lackey MA, Wu Y, Tew GN. J. Am. Chem. Soc. 2011; 133: 6906
  • 16 Zhang K, Tew GN. ACS Macro Lett. 2012; 1: 574
  • 17 Wang T.-W, Huang P.-R, Chow JL, Kaminsky W, Golder MR. J. Am. Chem. Soc. 2021; 143: 7314
  • 18 Gonsales SA, Kubo T, Flint MK, Abboud KA, Sumerlin BS, Veige AS. J. Am. Chem. Soc. 2016; 138: 4996
  • 19 Roland CD, Li H, Abboud KA, Wagener KB, Veige AS. Nat. Chem. 2016; 8: 791
  • 20 Chang YA, Waymouth RM. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 2892
  • 21 Pal D, Miao Z, Garrison JB, Veige AS, Sumerlin BS. Macromolecules 2020; 53: 9717
  • 22 Fischer FR, Nuckolls C. Angew. Chem. Int. Ed. 2010; 49: 7257
  • 23 von Kugelgen S, Bellone DE, Cloke RR, Perkins WS, Fischer FR. J. Am. Chem. Soc. 2016; 138: 6234
  • 24 Miao Z, Gonsales SA, Ehm C, Mentink-Vigier F, Bowers CR, Sumerlin BS, Veige AS. Nat. Chem. 2021; 13: 792
  • 25 Eisenberg D, Shenhar R, Rabinovitz M. Chem. Soc. Rev. 2010; 39: 2879
  • 26 Leonhardt EJ, Jasti R. Nat. Rev. Chem. 2019; 3: 672
  • 27 Cheng YJ, Yang SH, Hsu CS. Chem. Rev. 2009; 109: 5868
  • 28 Lidster BJ, Kumar DR, Spring AM, Yu CY, Helliwell M, Raftery J, Turner ML. Org. Biomol. Chem. 2016; 14: 6079