Synlett 2023; 34(05): 471-476
DOI: 10.1055/s-0041-1738692
cluster
Special Edition Thieme Chemistry Journals Awardees 2022

Photo-organocatalytic Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Acetates

Peng Wang
a   Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, 350108 Fuzhou, P. R. of China
,
Shao-Jie Li
a   Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, 350108 Fuzhou, P. R. of China
,
Honghai Zhang
a   Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, 350108 Fuzhou, P. R. of China
,
Na Yang
a   Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, 350108 Fuzhou, P. R. of China
,
Saihu Liao
a   Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, 350108 Fuzhou, P. R. of China
b   Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, P. R. of China
› Author Affiliations
We gratefully acknowledge the Recruitment Program of Global Experts, the Beijing National Laboratory for Molecular Sciences, 100-Talent Program of Fujian, and Fuzhou University for financial support. We also thank the National Natural Science Foundation of China (No. 21602028).


Abstract

A metal-free synthesis of useful β-keto sulfonyl fluorides has been established via radical fluorosulfonylation of ketone-derived vinyl acetates under photoredox organocatalysis by using 1-fluorosulfonyl benzoimidazolium (FABI) as the fluorosulfonyl radical source and oxygen-doped anthanthrene (ODA) as the photocatalyst. A series of aryl and alkyl β-keto sulfonyl fluorides as well as cyclic analogues can be readily obtained in moderate to high yields from widely available ketone starting materials.

Supporting Information



Publication History

Received: 30 June 2022

Accepted after revision: 09 August 2022

Article published online:
09 September 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
  • 2 Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. Chem. Soc. Rev. 2019; 48: 4731
  • 3 Xu L, Dong J. Chin. J. Chem. 2020; 38: 414
  • 4 Lee C, Cook AJ, Elisabeth JE, Friede NC, Sammis GM, Ball ND. ACS Catal. 2021; 11: 6578
  • 5 Lou TS.-B, Willis MC. Nat. Rev. Chem. 2022; 6: 146
  • 6 Epifanov M, Foth PJ, Gu F, Barrillon C, Kanani SS, Higman CS, Hein JE, Sammis GM. J. Am. Chem. Soc. 2018; 140: 16464
  • 7 Meng G, Guo T, Ma T, Zhang J, Shen Y, Sharpless KB, Dong J. Nature 2019; 574: 86
  • 8 Wang L, Cornella JA. Angew. Chem. Int. Ed. 2020; 59: 23510
  • 9 Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. Angew. Chem. Int. Ed. 2021; 60: 7397
  • 10 Smedley CJ, Homer JA, Gialelis TL, Barrow AS, Koelln RA, Moses JE. Angew. Chem. Int. Ed. 2022; 61: e202112375
  • 11 Narayanan A, Jones LH. Chem. Sci. 2015; 6: 2650
  • 12 Dalton SE, Campos S. ChemBioChem 2020; 21: 1080
  • 13 Grygorenko OO, Volochnyuk DM, Vashchenko BV. Eur. J. Org. Chem. 2021; 6478
  • 14 Jones LH. ACS Med. Chem. Lett. 2018; 9: 584
  • 15 Jones LH, Kelly JW. RSC Med. Chem. 2020; 11: 10
  • 16 Gao B, Zhang L, Zheng Q, Zhou F, Klivansky LM, Lu J, Liu Y, Dong J, Wu P, Sharpless KB. Nat. Chem. 2017; 9: 1083
  • 17 Hmissa T, Zhang X, Dhumal NR, McManus GJ, Zhou X, Nulwala HB, Mirjafari A. Angew. Chem. Int. Ed. 2018; 57: 16005
  • 18 Yang C, Flynn JP, Niu J. Angew. Chem. Int. Ed. 2018; 57: 16194
  • 19 Liu Y, Wu H, Guo Y, Xiao J.-C, Chen Q.-Y, Liu C. Angew. Chem. Int. Ed. 2017; 56: 15432
  • 20 Davies AT, Curto JM, Bagley SW, Willis MC. Chem. Sci. 2017; 8: 1233
  • 21 Lou TS, Bagley SW, Willis MC. Angew. Chem. Int. Ed. 2019; 58: 18859
  • 22 Laudadio G, Bartolomeu A. deA, Verwijlen LM. H. M, Cao Y, de Oliveira KT, Noël T. J. Am. Chem. Soc. 2019; 141: 11832
  • 23 Zhong T, Yi J.-T, Chen Z.-D, Thuang Q.-C, Li Y.-Z, Lu G, Weng J. Chem. Sci. 2021; 12: 9359
  • 24 Jin S, Haug GC, Trevino R, Nguyen VD, Arman HD, Larionov OV. Chem. Sci. 2021; 12: 13914
  • 25 Qin HL, Zheng Q, Bare GA, Wu P, Sharpless KB. Angew. Chem. Int. Ed. 2016; 55: 14155
  • 26 Zha GF, Zheng Q, Leng J, Wu P, Qin HL, Sharpless KB. Angew. Chem. Int. Ed. 2017; 56: 4849
  • 27 Xu R, Xu T, Yang M, Cao T, Liao S. Nat. Commun. 2019; 10: 3752
  • 28 Smedley CJ, Li G, Barrow AS, Gialelis TL, Giel M.-C, Ottonello A, Cheng Y, Kitamura S, Wolan DW, Sharpless KB, Moses JE. Angew. Chem. Int. Ed. 2020; 59: 12460
  • 29 Frye NL, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2022; 61: e202115593
  • 30 Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. Angew. Chem. Int. Ed. 2021; 60: 27271
  • 31 Henkel T, Krügerke T, Seppelt K. Angew. Chem. 1990; 102: 1171
  • 32 Nie X, Xu T, Song J, Devaraj A, Zhang B, Chen Y, Liao S. Angew. Chem. Int. Ed. 2021; 60: 3956
  • 33 Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Angew. Chem. Int. Ed. 2021; 60: 22035
  • 34 Nie X, Liao S. Synlett 2021; 401
  • 35 Feng Q, Fu Y, Zheng Y, Liao S, Huang S. Org. Lett. 2022; 24: 3702
  • 36 Cui J, Ke S, Zhao J, Wu S, Luo W, Xu S, Su X, Li Y. Org. Chem. Front. 2022; 9: 3540
  • 37 Liao S, Wang P, Zhang H. Chinese Patent CN 113248444 A, ZL 202110597989.9 2021
  • 38 Wang P, Zhang H, Nie X, Xu T, Liao S. Nat. Commun. 2022; 13: 3370
  • 39 Synthesis of 3a: The ODA (0.3 mg, 0.001 mmol, 1 mol%) was weighed into a 10-mL oven-dried Schlenk tube equipped with a stirrer bar, followed by the addition of FABI (127.5 mg, 0.25 mmol). The tube was evacuated and backfilled with argon for three times, then 1a (0.1 mmol) and anhydrous 1,4-dioxane (4 mL, 25 mM) was added under argon flow. The reaction mixture was allowed to stir at room temperature under blue LED irradiation for 12 h, then it was directly concentrated in vacuo. The residue was purified by silica gel flash chromatography (0.05% AcOH in petroleum ether/EtOAc = 10:1) to give the corresponding desired product 3a (17.4 mg, 86%). 1H NMR (500 MHz, CDCl3): δ = 7.96 (dq, J = 8.7, 1.4 Hz, 2 H), 7.74–7.67 (m, 1 H), 7.56 (tt, J = 7.7, 1.6 Hz, 2 H), 5.01 (d, J = 2.3 Hz, 2 H). 13C NMR (126 MHz, CDCl3): δ = 184.9, 135.4, 134.6 (d, J = 3.0 Hz), 129.4, 129.0, 57.6 (d, J = 15.7 Hz). 19F NMR (471 MHz, CDCl3): δ = 63.0 Compound 3s: Yield: 19.2 mg (84%). 1H NMR (400 MHz, CDCl3): δ = 7.88 (d, J = 8.4 Hz, 2 H), 7.34 (d, J = 8.3 Hz, 2 H), 5.37 (m, 1 H), 2.45 (s, 3 H), 1.86 (d, J = 7.0 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 188.7, 146.5, 132.0 (d, J = 2.2 Hz), 130.1, 129.4, 61.7 (d, J = 12.8 Hz), 22.0, 13.9. 19F NMR (376 MHz, CDCl3): δ = 50.8. HRMS (ESI): m/z calculated for C10H11FNaO3S [M + Na]+ 253.0305; found: 253.0305. Compound 3x: Yield: 12.6 mg (60%). 1H NMR (400 MHz, CDCl3): δ = 4.38 (d, J = 3.2 Hz, 2 H), 2.69 (t, J = 7.2 Hz, 2 H), 1.65 (p, J = 7.2 Hz, 2 H), 1.38–1.22 (m, 6 H), 0.93–0.83 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 194.7, 60.4 (d, J = 15.4 Hz), 43.6, 31.5, 28.5, 23.2, 22.5, 14.1. 19F NMR (376 MHz, CDCl3): δ = 61.7.
  • 40 Cheng P, Wang W, Wang L, Zeng J, Reiser O, Liang Y. Tetrahedron Lett. 2019; 60: 1408
  • 41 Jiang H, Cheng Y, Zhang Y, Yu S. Eur. J. Org. Chem. 2013; 5485
  • 42 Ma Q, Song J, Zhang X, Jiang Y, Ji L, Liao S. Nat. Commun. 2021; 12: 429
  • 43 Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 714