J Neurol Surg A Cent Eur Neurosurg 2022; 83(05): 451-460
DOI: 10.1055/s-0041-1739223
Original Article

Clinical Practice in Spine Surgery: An International Survey

Jordi Pérez-Bovet
1   Department of Neurosurgery, University Hospital Dr. Josep Trueta, Girona, Spain
,
Maria Buxó
2   Department of Statistics, Girona Biomedical Research Institute, Salt, Girona, Spain
,
Jordi Rimbau Muñoz
1   Department of Neurosurgery, University Hospital Dr. Josep Trueta, Girona, Spain
3   Department of Neurosurgery, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
› Institutsangaben

Abstract

Background The availability of diverse and sophisticated surgical options to treat spine conditions is compounded by the scarcity of high-level evidence to guide decision-making. Although studies on discrete treatments are frequently published, little information is available regarding real-world surgical practice. We intended to survey spine surgeons to assess clinical management of common spine diagnosis in day-to-day settings.

Methods An online survey was distributed among neurosurgeons and orthopaedic surgeons worldwide. The obtained assessment of common surgical practice is contextualized in a review of the best available evidence.

Results The survey was answered by more than 310 members of several European, Australasian, and South African professional societies. The submitted responses translate a surgical practice generally grounded on evidence, favoring well-tried techniques, providing comprehensive treatment for the most severe diagnoses. Such practice comes mostly from neurosurgeons focused on spine surgery, practicing in teaching hospitals.

Conclusion We believe that the pragmatic, day-to-day approach to spine conditions captured in the present survey offers an informative insight to involved surgeons.

Supplementary Material



Publikationsverlauf

Eingereicht: 19. Dezember 2020

Angenommen: 23. April 2021

Artikel online veröffentlicht:
12. Dezember 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Srinivas SV, Deyo RA, Berger ZD. Application of “less is more” to low back pain. Arch Intern Med 2012; 172 (13) 1016-1020
  • 2 Wang MC, Kreuter W, Wolfla CE, Maiman DJ, Deyo RA. Trends and variations in cervical spine surgery in the United States: Medicare beneficiaries, 1992 to 2005. Spine 2009; 34 (09) 955-961 , discussion 962–963
  • 3 Kobayashi K, Ando K, Nishida Y, Ishiguro N, Imagama S. Epidemiological trends in spine surgery over 10 years in a multicenter database. Eur Spine J 2018; 27 (08) 1698-1703
  • 4 Deyo RA, Nachemson A, Mirza SK. Spinal fluid surgery. Spine J 2005; 5 (06) 698-699 , author reply 699–700
  • 5 Irwin ZN, Hilibrand A, Gustavel M. et al. Variation in surgical decision making for degenerative spinal disorders. Part I: lumbar spine. Spine 2005; 30 (19) 2208-2213
  • 6 Watts C. Neurosurgery: a profession or a technical trade?. Surg Neurol Int 2014; 5: 168
  • 7 Groff MW, Dailey AT, Ghogawala Z. et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 12: pedicle screw fixation as an adjunct to posterolateral fusion. J Neurosurg Spine 2014; 21 (01) 75-78
  • 8 Mummaneni PV, Dhall SS, Eck JC. et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 11: interbody techniques for lumbar fusion. J Neurosurg Spine 2014; 21 (01) 67-74
  • 9 Bydon M, Macki M, Abt NB. et al. The cost-effectiveness of interbody fusions versus posterolateral fusions in 137 patients with lumbar spondylolisthesis. Spine J 2015; 15 (03) 492-498
  • 10 Kreiner DS, Baisden J, Mazanec DJ. et al. Guideline summary review: an evidence-based clinical guideline for the diagnosis and treatment of adult isthmic spondylolisthesis. Spine J 2016; 16 (12) 1478-1485
  • 11 Sasso RC, Shively KD, Reilly TM. Transvertebral transsacral strut grafting for high-grade isthmic spondylolisthesis L5-S1 with fibular allograft. J Spinal Disord Tech 2008; 21 (05) 328-333
  • 12 Piazza BR, Pace GI, Knaub MA, Bible JE. Anterior cervical discectomy and fusion pseudarthrosis: posterior versus redo anterior. Clin Spine Surg 2017; 30 (03) 91-93
  • 13 Kaiser MG, Mummaneni PV, Matz PG. et al; Joint Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and Congress of Neurological Surgeons. Management of anterior cervical pseudarthrosis. J Neurosurg Spine 2009; 11 (02) 228-237
  • 14 McAnany SJ, Baird EO, Overley SC, Kim JS, Qureshi SA, Anderson PA. A meta-analysis of the clinical and fusion results following treatment of symptomatic cervical pseudarthrosis. Global Spine J 2015; 5 (02) 148-155
  • 15 Kreiner DS, Hwang SW, Easa JE. et al; North American Spine Society. An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy. Spine J 2014; 14 (01) 180-191
  • 16 Rihn JA, Hilibrand AS, Radcliff K. et al. Duration of symptoms resulting from lumbar disc herniation: effect on treatment outcomes: analysis of the Spine Patient Outcomes Research Trial (SPORT). J Bone Joint Surg Am 2011; 93 (20) 1906-1914
  • 17 Peul WC, van den Hout WB, Brand R, Thomeer RT, Koes BW. Leiden-The Hague Spine Intervention Prognostic Study Group. Prolonged conservative care versus early surgery in patients with sciatica caused by lumbar disc herniation: two year results of a randomised controlled trial. BMJ 2008; 336 (7657): 1355-1358
  • 18 Weinstein JN, Tosteson TD, Lurie JD. et al; SPORT Investigators. Surgical versus nonsurgical therapy for lumbar spinal stenosis. N Engl J Med 2008; 358 (08) 794-810
  • 19 Kreiner DS, Shaffer WO, Baisden JL. et al; North American Spine Society. An evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spinal stenosis (update). Spine J 2013; 13 (07) 734-743
  • 20 Lurie JD, Tosteson TD, Tosteson A. et al. Long-term outcomes of lumbar spinal stenosis: eight-year results of the Spine Patient Outcomes Research Trial (SPORT). Spine 2015; 40 (02) 63-76
  • 21 Atlas SJ, Keller RB, Wu YA, Deyo RA, Singer DE. Long-term outcomes of surgical and nonsurgical management of lumbar spinal stenosis: 8 to 10 year results from the Maine Lumbar Spine Study. Spine 2005; 30 (08) 936-943
  • 22 Kovacs FM, Urrútia G, Alarcón JD. Surgery versus conservative treatment for symptomatic lumbar spinal stenosis: a systematic review of randomized controlled trials. Spine 2011; 36 (20) E1335-E1351
  • 23 Chou R, Hashimoto R, Friedly J. et al. Epidural corticosteroid injections for radiculopathy and spinal stenosis: A systematic review and meta-analysis. Ann Intern Med 2015; 163 (05) 373-381
  • 24 Phillips FM, Geisler FH, Gilder KM, Reah C, Howell KM, McAfee PC. Long-term outcomes of the US FDA IDE prospective, randomized controlled clinical trial comparing PCM cervical disc arthroplasty with anterior cervical discectomy and fusion. Spine 2015; 40 (10) 674-683
  • 25 Gornet MF, Lanman TH, Burkus JK. et al. Two-level cervical disc arthroplasty versus anterior cervical discectomy and fusion: 10-year outcomes of a prospective, randomized investigational device exemption clinical trial. J Neurosurg Spine 2019; 31 (04) 1-11
  • 26 Ma Z, Ma X, Yang H, Guan X, Li X. Anterior cervical discectomy and fusion versus cervical arthroplasty for the management of cervical spondylosis: a meta-analysis. Eur Spine J 2017; 26 (04) 998-1008
  • 27 Gao F, Mao T, Sun W. et al. An updated meta-analysis comparing artificial cervical disc arthroplasty (CDA) versus anterior cervical discectomy and fusion (ACDF) for the treatment of cervical degenerative disc disease (CDDD). Spine 2015; 40 (23) 1816-1823
  • 28 Radcliff K, Siburn S, Murphy H, Woods B, Qureshi S. Bias in cervical total disc replacement trials. Curr Rev Musculoskelet Med 2017; 10 (02) 170-176
  • 29 Park CK, Ryu KS. Are controversial issues in cervical total disc replacement resolved or unresolved?: a review of literature and recent updates. Asian Spine J 2018; 12 (01) 178-192
  • 30 Ding F, Jia Z, Zhao Z. et al. Total disc replacement versus fusion for lumbar degenerative disc disease: a systematic review of overlapping meta-analyses. Eur Spine J 2017; 26 (03) 806-815
  • 31 van den Eerenbeemt KD, Ostelo RW, van Royen BJ, Peul WC, van Tulder MW. Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature. Eur Spine J 2010; 19 (08) 1262-1280
  • 32 Würgler-Hauri CC, Kalbarczyk A, Wiesli M, Landolt H, Fandino J. Dynamic neutralization of the lumbar spine after microsurgical decompression in acquired lumbar spinal stenosis and segmental instability. Spine 2008; 33 (03) E66-E72
  • 33 Fay LY, Chang PY, Wu JC. et al. Dynesys dynamic stabilization-related facet arthrodesis. Neurosurg Focus 2016; 40 (01) E4
  • 34 Grob D, Benini A, Junge A, Mannion AF. Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 2005; 30 (03) 324-331
  • 35 Schaeren S, Broger I, Jeanneret B. Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization. Spine 2008; 33 (18) E636-E642
  • 36 Strömqvist BH, Berg S, Gerdhem P. et al. X-stop versus decompressive surgery for lumbar neurogenic intermittent claudication: randomized controlled trial with 2-year follow-up. Spine 2013; 38 (17) 1436-1442
  • 37 Lønne G, Johnsen LG, Rossvoll I. et al. Minimally invasive decompression versus x-stop in lumbar spinal stenosis: a randomized controlled multicenter study. Spine 2015; 40 (02) 77-85
  • 38 Moojen WA, Arts MP, Jacobs WCH. et al; Leiden-The Hague Spine Intervention Prognostic Study Group. Interspinous process device versus standard conventional surgical decompression for lumbar spinal stenosis: randomized controlled trial. BMJ 2013; 347: f6415
  • 39 Deyo RA, Martin BI, Ching A. et al. Interspinous spacers compared with decompression or fusion for lumbar stenosis: complications and repeat operations in the Medicare population. Spine 2013; 38 (10) 865-872
  • 40 Gu H, Chang Y, Zeng S. et al. Wallis interspinous spacer for treatment of primary lumbar disc herniation: three-year results of a randomized controlled trial. World Neurosurg 2018; 120: e1331-e1336
  • 41 Kotwal S, Kawaguchi S, Lebl D. et al. Minimally invasive lateral lumbar interbody fusion: clinical and radiographic outcome at a minimum 2-year follow-up. J Spinal Disord Tech 2015; 28 (04) 119-125
  • 42 Gandhoke GS, Shin HM, Chang YF. et al. A cost-effectiveness comparison between open transforaminal and minimally invasive lateral lumbar interbody fusions using the incremental cost-effectiveness ratio at 2-year follow-up. Neurosurgery 2016; 78 (04) 585-595
  • 43 Barbagallo GM, Albanese V, Raich AL, Dettori JR, Sherry N, Balsano M. Lumbar lateral interbody fusion (LLIF): comparative effectiveness and safety versus PLIF/TLIF and predictive factors affecting LLIF outcome. Evid Based Spine Care J 2014; 5 (01) 28-37
  • 44 Watkins IV R, Watkins III R, Hanna R. Non-union rate with stand-alone lateral lumbar interbody fusion. Medicine (Baltimore) 2014; 93 (29) e275
  • 45 Seichi A, Hoshino Y, Kimura A. et al. Neurological complications of cervical laminoplasty for patients with ossification of the posterior longitudinal ligament-a multi-institutional retrospective study. Spine 2011; 36 (15) E998-E1003
  • 46 Yoo S, Ryu D, Choi HJ. et al. Ossification foci act as stabilizers in continuous-type ossification of the posterior longitudinal ligament: a comparative study between laminectomy and laminoplasty. Acta Neurochir (Wien) 2017; 159 (09) 1783-1790
  • 47 Masaki Y, Yamazaki M, Okawa A. et al. An analysis of factors causing poor surgical outcome in patients with cervical myelopathy due to ossification of the posterior longitudinal ligament: anterior decompression with spinal fusion versus laminoplasty. J Spinal Disord Tech 2007; 20 (01) 7-13
  • 48 Maruo K, Moriyama T, Tachibana T. et al. The impact of dynamic factors on surgical outcomes after double-door laminoplasty for ossification of the posterior longitudinal ligament of the cervical spine. J Neurosurg Spine 2014; 21 (06) 938-943
  • 49 Ha Y, Shin JJ. Comparison of clinical and radiological outcomes in cervical laminoplasty versus laminectomy with fusion in patients with ossification of the posterior longitudinal ligament. Neurosurg Rev 2020; 43 (05) 1409-1421
  • 50 Iwasaki M, Okuda S, Miyauchi A. et al. Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: Part 2: Advantages of anterior decompression and fusion over laminoplasty. Spine 2007; 32 (06) 654-660
  • 51 Iwasaki M, Okuda S, Miyauchi A. et al. Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament: Part 1: clinical results and limitations of laminoplasty. Spine 2007; 32 (06) 647-653
  • 52 Fujiyoshi T, Yamazaki M, Kawabe J. et al. A new concept for making decisions regarding the surgical approach for cervical ossification of the posterior longitudinal ligament: the K-line. Spine 2008; 33 (26) E990-E993
  • 53 Matsuoka T, Yamaura I, Kurosa Y, Nakai O, Shindo S, Shinomiya K. Long-term results of the anterior floating method for cervical myelopathy caused by ossification of the posterior longitudinal ligament. Spine 2001; 26 (03) 241-248
  • 54 Sakai K, Okawa A, Takahashi M. et al. Five-year follow-up evaluation of surgical treatment for cervical myelopathy caused by ossification of the posterior longitudinal ligament: a prospective comparative study of anterior decompression and fusion with floating method versus laminoplasty. Spine 2012; 37 (05) 367-376
  • 55 Kalb S, Martirosyan NL, Perez-Orribo L, Kalani MYS, Theodore N. Analysis of demographics, risk factors, clinical presentation, and surgical treatment modalities for the ossified posterior longitudinal ligament. Neurosurg Focus 2011; 30 (03) E11
  • 56 Yoshii T, Egawa S, Hirai T. et al. A systematic review and meta-analysis comparing anterior decompression with fusion and posterior laminoplasty for cervical ossification of the posterior longitudinal ligament. J Orthop Sci 2020; 25 (01) 58-65
  • 57 Nakashima H, Tetreault L, Kato S. et al. Prediction of outcome following surgical treatment of cervical myelopathy based on features of ossification of the posterior longitudinal ligament: a systematic review. JBJS Rev 2017; 5 (02) 01874474 -201702000-00003
  • 58 Glennie RA, Bailey CS, Tsai EC. et al. An analysis of ideal and actual time to surgery after traumatic spinal cord injury in Canada. Spinal Cord 2017; 55 (06) 618-623
  • 59 Furlan JC, Noonan V, Cadotte DW, Fehlings MG. Timing of decompressive surgery of spinal cord after traumatic spinal cord injury: an evidence-based examination of pre-clinical and clinical studies. J Neurotrauma 2011; 28 (08) 1371-1399
  • 60 Furlan JC, Craven BC, Massicotte EM, Fehlings MG. Early versus delayed surgical decompression of spinal cord after traumatic cervical spinal cord injury: a cost-utility analysis. World Neurosurg 2016; 88: 166-174
  • 61 Dvorak MF, Noonan VK, Fallah N. et al; RHSCIR Network. The influence of time from injury to surgery on motor recovery and length of hospital stay in acute traumatic spinal cord injury: an observational Canadian cohort study. J Neurotrauma 2015; 32 (09) 645-654
  • 62 Patchell RA, Tibbs PA, Regine WF. et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 2005; 366 (9486): 643-648
  • 63 Klimo Jr P, Thompson CJ, Kestle JRW, Schmidt MH. A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro-oncol 2005; 7 (01) 64-76
  • 64 Wright E, Ricciardi F, Arts M. et al. Metastatic spine tumor epidemiology: comparison of trends in surgery across two decades and three continents. World Neurosurg 2018; 114: e809-e817
  • 65 Polly Jr DW, Hamill CL, Bridwell KH. Debate: to fuse or not to fuse to the sacrum, the fate of the L5-S1 disc. Spine 2006; 31 (19, Suppl): S179-S184
  • 66 Edwards II CC, Bridwell KH, Patel A, Rinella AS, Berra A, Lenke LG. Long adult deformity fusions to L5 and the sacrum. A matched cohort analysis. Spine 2004; 29 (18) 1996-2005
  • 67 Inoue G, Takaso M, Miyagi M. et al. Risk factors for L5-S1 disk height reduction after lumbar posterolateral floating fusion surgery. J Spinal Disord Tech 2014; 27 (05) E187-E192
  • 68 Bridwell KH, Edwards II CC, Lenke LG. The pros and cons to saving the L5-S1 motion segment in a long scoliosis fusion construct. Spine 2003; 28 (20, Suppl): S234-S242
  • 69 Payer M. “Minimally invasive” lumbar spine surgery: a critical review. Acta Neurochir (Wien) 2011; 153 (07) 1455-1459
  • 70 Lubelski D, Mihalovich KE, Skelly AC. et al. Is minimal access spine surgery more cost-effective than conventional spine surgery?. Spine 2014; 39 (22, Suppl 1): S65-S74
  • 71 Lin Y, Chen W, Chen A, Li F. Comparison between minimally invasive and open transforaminal lumbar interbody fusion: a meta-analysis of clinical results and safety outcomes. J Neurol Surg A Cent Eur Neurosurg 2016; 77 (01) 2-10
  • 72 Schöller K, Alimi M, Cong GT, Christos P, Härtl R. Lumbar spinal stenosis associated with degenerative lumbar spondylolisthesis: a systematic review and meta-analysis of secondary fusion rates following open vs minimally invasive decompression. Neurosurgery 2017; 80 (03) 355-367
  • 73 Parker SL, Adogwa O, Witham TF, Aaronson OS, Cheng J, McGirt MJ. Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): literature review and cost analysis. Minim Invasive Neurosurg 2011; 54 (01) 33-37
  • 74 Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR. Perioperative outcomes and adverse events of minimally invasive versus open posterior lumbar fusion: meta-analysis and systematic review. J Neurosurg Spine 2016; 24 (03) 416-427
  • 75 Mummaneni PV, Bisson EF, Kerezoudis P. et al. Minimally invasive versus open fusion for Grade I degenerative lumbar spondylolisthesis: analysis of the Quality Outcomes Database. Neurosurg Focus 2017; 43 (02) E11
  • 76 Perdomo-Pantoja A, Ishida W, Zygourakis C. et al. Accuracy of current techniques for placement of pedicle screws in the spine: a comprehensive systematic review and meta-analysis of 51,161 screws. World Neurosurg 2019; 126: 664-678.e3
  • 77 Mason A, Paulsen R, Babuska JM. et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine 2014; 20 (02) 196-203
  • 78 Lim MR, Girardi FP, Yoon SC, Huang RC, Cammisa Jr FP. Accuracy of computerized frameless stereotactic image-guided pedicle screw placement into previously fused lumbar spines. Spine 2005; 30 (15) 1793-1798
  • 79 Raley DA, Mobbs RJ. Retrospective computed tomography scan analysis of percutaneously inserted pedicle screws for posterior transpedicular stabilization of the thoracic and lumbar spine: accuracy and complication rates. Spine 2012; 37 (12) 1092-1100
  • 80 Ringel F, Stoffel M, Stüer C, Meyer B. Minimally invasive transmuscular pedicle screw fixation of the thoracic and lumbar spine. Neurosurgery 2006;59(4, Suppl 2):ONS361–ONS366, discussion ONS366–ONS367
  • 81 Kallmes DF, Comstock BA, Heagerty PJ. et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N Engl J Med 2009; 361 (06) 569-579
  • 82 Buchbinder R, Osborne RH, Ebeling PR. et al. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N Engl J Med 2009; 361 (06) 557-568
  • 83 Wardlaw D, Cummings SR, Van Meirhaeghe J. et al. Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression fracture (FREE): a randomised controlled trial. Lancet 2009; 373 (9668): 1016-1024
  • 84 Clark W, Bird P, Gonski P. et al. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2016; 388 (10052): 1408-1416
  • 85 Li L, Ren J, Liu J. et al. Results of vertebral augmentation treatment for patients of painful osteoporotic vertebral compression fractures: a meta-analysis of eight randomized controlled trials. PLoS One 2015; 10 (09) e0138126
  • 86 Barr JD, Jensen ME, Hirsch JA. et al; Society of Interventional Radiology, American Association of Neurological Surgeons, Congress of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, American Society of Spine Radiology, Canadian Interventional Radiology Association, Society of Neurointerventional Surgery. Position statement on percutaneous vertebral augmentation: a consensus statement developed by the Society of Interventional Radiology (SIR), American Association of Neurological Surgeons (AANS) and the Congress of Neurological Surgeons (CNS), American College of Radiology (ACR), American Society of Neuroradiology (ASNR), American Society of Spine Radiology (ASSR), Canadian Interventional Radiology Association (CIRA), and the Society of NeuroInterventional Surgery (SNIS). J Vasc Interv Radiol 2014; 25 (02) 171-181
  • 87 Rodriguez-Olaverri JC, Zimick NC, Merola A. et al. Comparing the clinical and radiological outcomes of pedicular transvertebral screw fixation of the lumbosacral spine in spondylolisthesis versus unilateral transforaminal lumbar interbody fusion (TLIF) with posterior fixation using anterior cages. Spine 2008; 33 (18) 1977-1981
  • 88 de Bodman C, Bergerault F, de Courtivron B, Bonnard C. Lumbo-sacral motion conserved after isthmic reconstruction: long-term results. J Child Orthop 2014; 8 (01) 97-103
  • 89 Winder MJ, Thomas KC. Minimally invasive versus open approach for cervical laminoforaminotomy. Can J Neurol Sci 2011; 38 (02) 262-267
  • 90 Fujimoto T, Taniwaki T, Tahata S, Nakamura T, Mizuta H. Patient outcomes for a minimally invasive approach to treat lumbar spinal canal stenosis: is microendoscopic or microscopic decompressive laminotomy the less invasive surgery?. Clin Neurol Neurosurg 2015; 131: 21-25
  • 91 Brouwer PA, Brand R, van den Akker-van Marle ME. et al. Percutaneous laser disc decompression versus conventional microdiscectomy in sciatica: a randomized controlled trial. Spine J 2015; 15 (05) 857-865
  • 92 Oder B, Loewe M, Reisegger M, Lang W, Ilias W, Thurnher SA. CT-guided ozone/steroid therapy for the treatment of degenerative spinal disease: effect of age, gender, disc pathology and multi-segmental changes. Neuroradiology 2008; 50 (09) 777-785
  • 93 de Sèze M, Saliba L, Mazaux JM. Percutaneous treatment of sciatica caused by a herniated disc: an exploratory study on the use of gaseous discography and Discogel(®) in 79 patients. Ann Phys Rehabil Med 2013; 56 (02) 143-154
  • 94 Karasek M, Bogduk N. Twelve-month follow-up of a controlled trial of intradiscal thermal anuloplasty for back pain due to internal disc disruption. Spine 2000; 25 (20) 2601-2607
  • 95 Freeman BJC, Fraser RD, Cain CM, Hall DJ, Chapple DCL. A randomized, double-blind, controlled trial: intradiscal electrothermal therapy versus placebo for the treatment of chronic discogenic low back pain. Spine 2005; 30 (21) 2369-2377 , discussion 2378
  • 96 Freeman BJC, Mehdian R. Intradiscal electrothermal therapy, percutaneous discectomy, and nucleoplasty: what is the current evidence?. Curr Pain Headache Rep 2008; 12 (01) 14-21
  • 97 Schenk B, Brouwer PA, Peul WC, van Buchem MA. Percutaneous laser disk decompression: a review of the literature. AJNR Am J Neuroradiol 2006; 27 (01) 232-235
  • 98 Goupille P, Mulleman D, Mammou S, Griffoul I, Valat JP. Percutaneous laser disc decompression for the treatment of lumbar disc herniation: a review. Semin Arthritis Rheum 2007; 37 (01) 20-30
  • 99 Ong D, Chua NHL, Vissers K. Percutaneous disc decompression for lumbar radicular pain: a review article. Pain Pract 2016; 16 (01) 111-126