Eur J Pediatr Surg 2021; 31(06): 472-481
DOI: 10.1055/s-0041-1740337
Review Article

Genetic Diagnostic Strategies and Counseling for Families Affected by Congenital Diaphragmatic Hernia

1   Department of General, Visceral, Vascular and Thoracic Surgery, Unit of Pediatric Surgery, Universitätsklinikum Bonn, Bonn, Germany
,
Erwin Brosens
2   Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
,
Wendy Kay Chung
3   Department of Medicine, Columbia University Irving Medical Center, New York, United States
4   Department of Pediatrics, Columbia University Irving Medical Center, New York, United States
› Institutsangaben
Funding Rheinische Friedrich-Wilhelms-Universität Bonn. Bonfor grant number O-112.0062

Abstract

Congenital diaphragmatic hernia (CDH) is a relatively common and severe birth defect with variable clinical outcome and associated malformations in up to 60% of patients. Mortality and morbidity remain high despite advances in pre-, intra-, and postnatal management. We review the current literature and give an overview about the genetics of CDH to provide guidelines for clinicians with respect to genetic diagnostics and counseling for families. Until recently, the common practice was (molecular) karyotyping or chromosome microarray if the CDH diagnosis is made prenatally with a 10% diagnostic yield. Undiagnosed patients can be reflexed to trio exome/genome sequencing with an additional diagnostic yield of 10 to 20%. Even with a genetic diagnosis, there can be a range of clinical outcomes. All families with a child with CDH with or without additional malformations should be offered genetic counseling and testing in a family-based trio approach.



Publikationsverlauf

Eingereicht: 25. Oktober 2021

Angenommen: 01. November 2021

Artikel online veröffentlicht:
15. Dezember 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 McGivern MR, Best KE, Rankin J. et al. Epidemiology of congenital diaphragmatic hernia in Europe: a register-based study. Arch Dis Child Fetal Neonatal Ed 2015; 100 (02) F137-F144
  • 2 Gupta VS, Harting MT, Lally PA. et al; Congenital Diaphragmatic Hernia Study Group. Mortality in congenital diaphragmatic hernia: a multicenter registry study of over 5000 patients over 25 years. Ann Surg 2021 (e-pub ahead of print)
  • 3 Pickering M, Jones JF. The diaphragm: two physiological muscles in one. J Anat 2002; 201 (04) 305-312
  • 4 Kardon G, Ackerman KG, McCulley DJ. et al. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10 (08) 955-970
  • 5 Longoni M, Pober BR, High FA. Congenital Diaphragmatic Hernia Overview. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews(®). Seattle (WA): University of Washington; Seattle Copyright © 1993–2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved.; 1993
  • 6 Stoll C, Alembik Y, Dott B, Roth MP. Associated malformations in cases with congenital diaphragmatic hernia. Genet Couns 2008; 19 (03) 331-339
  • 7 Pober BR. Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. Am J Med Genet C Semin Med Genet 2007; 145C (02) 158-171
  • 8 Zaiss I, Kehl S, Link K. et al. Associated malformations in congenital diaphragmatic hernia. Am J Perinatol 2011; 28 (03) 211-218
  • 9 Chiu PP, Ijsselstijn H. Morbidity and long-term follow-up in CDH patients. Eur J Pediatr Surg 2012; 22 (05) 384-392
  • 10 Amoils M, Crisham Janik M, Lustig LR. Patterns and predictors of sensorineural hearing loss in children with congenital diaphragmatic hernia. JAMA Otolaryngol Head Neck Surg 2015; 141 (10) 923-926
  • 11 Masumoto K, Nagata K, Uesugi T, Yamada T, Taguchi T. Risk factors for sensorineural hearing loss in survivors with severe congenital diaphragmatic hernia. Eur J Pediatr 2007; 166 (06) 607-612
  • 12 Merrell AJ, Ellis BJ, Fox ZD, Lawson JA, Weiss JA, Kardon G. Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias. Nat Genet 2015; 47 (05) 496-504
  • 13 Cleal L, McHaffie SL, Lee M, Hastie N, Martínez-Estrada OM, Chau YY. Resolving the heterogeneity of diaphragmatic mesenchyme: a novel mouse model of congenital diaphragmatic hernia. Dis Model Mech 2021; 14 (01) 14
  • 14 Carmona R, Cañete A, Cano E, Ariza L, Rojas A, Muñoz-Chápuli R. Conditional deletion of WT1 in the septum transversum mesenchyme causes congenital diaphragmatic hernia in mice. eLife 2016; 5: 5
  • 15 Sefton EM, Gallardo M, Kardon G. Developmental origin and morphogenesis of the diaphragm, an essential mammalian muscle. Dev Biol 2018; 440 (02) 64-73
  • 16 Sefton EM, Kardon G. Connecting muscle development, birth defects, and evolution: an essential role for muscle connective tissue. Curr Top Dev Biol 2019; 132: 137-176
  • 17 Paris ND, Coles GL, Ackerman KG. Wt1 and β-catenin cooperatively regulate diaphragm development in the mouse. Dev Biol 2015; 407 (01) 40-56
  • 18 Coles GL, Ackerman KG. Kif7 is required for the patterning and differentiation of the diaphragm in a model of syndromic congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2013; 110 (21) E1898-E1905
  • 19 Clugston RD, Zhang W, Greer JJ. Early development of the primordial mammalian diaphragm and cellular mechanisms of nitrofen-induced congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol 2010; 88 (01) 15-24
  • 20 Noda K, Kitagawa K, Miki T. et al. A matricellular protein fibulin-4 is essential for the activation of lysyl oxidase. Sci Adv 2020; 6 (48) eabc1404
  • 21 Nakamura H, Doi T, Puri P, Friedmacher F. Transgenic animal models of congenital diaphragmatic hernia: a comprehensive overview of candidate genes and signaling pathways. Pediatr Surg Int 2020; 36 (09) 991-997
  • 22 Beurskens N, Klaassens M, Rottier R, de Klein A, Tibboel D. Linking animal models to human congenital diaphragmatic hernia. Birth Defects Res A Clin Mol Teratol 2007; 79 (08) 565-572
  • 23 Hornstra IK, Birge S, Starcher B, Bailey AJ, Mecham RP, Shapiro SD. Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem 2003; 278 (16) 14387-14393
  • 24 Garne E, Haeusler M, Barisic I, Gjergja R, Stoll C, Clementi M. Euroscan Study Group. Congenital diaphragmatic hernia: evaluation of prenatal diagnosis in 20 European regions. Ultrasound Obstet Gynecol 2002; 19 (04) 329-333
  • 25 Cordier AG, Jani JC, Cannie MM. et al. Stomach position in prediction of survival in left-sided congenital diaphragmatic hernia with or without fetoscopic endoluminal tracheal occlusion. Ultrasound Obstet Gynecol 2015; 46 (02) 155-161
  • 26 Basta AM, Lusk LA, Keller RL, Filly RA. Fetal stomach position predicts neonatal outcomes in isolated left-sided congenital diaphragmatic hernia. Fetal Diagn Ther 2016; 39 (04) 248-255
  • 27 Metkus AP, Filly RA, Stringer MD, Harrison MR, Adzick NS. Sonographic predictors of survival in fetal diaphragmatic hernia. J Pediatr Surg 1996; 31 (01) 148-151 , discussion 151–152
  • 28 Burgos CM, Frenckner B, Luco M, Harting MT, Lally PA, Lally KP. Congenital Diaphragmatic Hernia Study Group. Prenatally versus postnatally diagnosed congenital diaphragmatic hernia - Side, stage, and outcome. J Pediatr Surg 2019; 54 (04) 651-655
  • 29 Kilian AK, Büsing KA, Schuetz EM, Schaible T, Neff KW. Fetal MR lung volumetry in congenital diaphragmatic hernia (CDH): prediction of clinical outcome and the need for extracorporeal membrane oxygenation (ECMO). Klin Padiatr 2009; 221 (05) 295-301
  • 30 Deprest JA, Flemmer AW, Gratacos E, Nicolaides K. Antenatal prediction of lung volume and in-utero treatment by fetal endoscopic tracheal occlusion in severe isolated congenital diaphragmatic hernia. Semin Fetal Neonatal Med 2009; 14 (01) 8-13
  • 31 Snoek KG, Peters NCJ, van Rosmalen J. et al. The validity of the observed-to-expected lung-to-head ratio in congenital diaphragmatic hernia in an era of standardized neonatal treatment; a multicenter study. Prenat Diagn 2017; 37 (07) 658-665
  • 32 Qiao L, Wynn J, Yu L. et al. Likely damaging de novo variants in congenital diaphragmatic hernia patients are associated with worse clinical outcomes. Genet Med 2020; 22 (12) 2020-2028
  • 33 Coughlin MA, Gupta VS, Ebanks AH, Harting MT, Lally KP. Congenital Diaphragmatic Hernia Study Group. Incidence and outcomes of patients with congenital diaphragmatic hernia and pulmonary sequestration. J Pediatr Surg 2021; 56 (06) 1126-1129
  • 34 Coughlin MA, Werner NL, Gajarski R. et al. Prenatally diagnosed severe CDH: mortality and morbidity remain high. J Pediatr Surg 2016; 51 (07) 1091-1095
  • 35 Jancelewicz T, Brindle ME. Prediction tools in congenital diaphragmatic hernia. Semin Perinatol 2020; 44 (01) 151165
  • 36 Ferguson DM, Gupta VS, Lally PA. et al; Congenital Diaphragmatic Hernia Study Group. Early, postnatal pulmonary hypertension severity predicts inpatient outcomes in congenital diaphragmatic hernia. Neonatology 2021; 118 (02) 147-154
  • 37 Brindle ME, Cook EF, Tibboel D, Lally PA, Lally KP. Congenital Diaphragmatic Hernia Study Group. A clinical prediction rule for the severity of congenital diaphragmatic hernias in newborns. Pediatrics 2014; 134 (02) e413-e419
  • 38 Cochius-den Otter SCM, Erdem Ö, van Rosmalen J. et al. Validation of a prediction rule for mortality in congenital diaphragmatic hernia. Pediatrics 2020; 145 (04) 145
  • 39 Yu L, Wynn J, Ma L. et al. De novo copy number variants are associated with congenital diaphragmatic hernia. J Med Genet 2012; 49 (10) 650-659
  • 40 Russo FM, Debeer A, De Coppi P. et al. What should we tell parents? Congenital diaphragmatic hernia. Prenat Diagn 2020; DOI: 10.1002/pd.5880.
  • 41 Yu L, Sawle AD, Wynn J. et al. Increased burden of de novo predicted deleterious variants in complex congenital diaphragmatic hernia. Hum Mol Genet 2015; 24 (16) 4764-4773
  • 42 Longoni M, High FA, Russell MK. et al. Molecular pathogenesis of congenital diaphragmatic hernia revealed by exome sequencing, developmental data, and bioinformatics. Proc Natl Acad Sci U S A 2014; 111 (34) 12450-12455
  • 43 Bendixen C, Reutter H. The role of de novo variants in patients with congenital diaphragmatic hernia. Genes (Basel) 2021; 12 (09) 1405
  • 44 Pober BR, Lin A, Russell M. et al. Infants with Bochdalek diaphragmatic hernia: sibling precurrence and monozygotic twin discordance in a hospital-based malformation surveillance program. Am J Med Genet A 2005; 138A (02) 81-88
  • 45 Wang W, Pan W, Chen J, Xie W, Liu M, Wang J. Outcomes of congenital diaphragmatic hernia in one of the twins. Am J Perinatol 2019; 36 (12) 1304-1309
  • 46 Sahin S, Kutman KH, Bozkurt O. et al. A trisomy 13 case presenting with congenital diaphragmatic hernia and microphthalmiA. Genet Couns 2015; 26 (02) 263-265
  • 47 Jain A, Kumar P, Jindal A. et al. Congenital diaphragmatic hernia in a case of patau syndrome: a rare association. J Neonat Surg 2015; 4: 20
  • 48 Tonks A, Wyldes M, Somerset DA. et al. Congenital malformations of the diaphragm: findings of the West Midlands Congenital Anomaly Register 1995 to 2000. Prenat Diagn 2004; 24 (08) 596-604
  • 49 Holder AM, Klaassens M, Tibboel D, de Klein A, Lee B, Scott DA. Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet 2007; 80 (05) 825-845
  • 50 Zhu Q, High FA, Zhang C. et al. Systematic analysis of copy number variation associated with congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2018; 115 (20) 5247-5252
  • 51 Scott DA, Klaassens M, Holder AM. et al. Genome-wide oligonucleotide-based array comparative genome hybridization analysis of non-isolated congenital diaphragmatic hernia. Hum Mol Genet 2007; 16 (04) 424-430
  • 52 Wat MJ, Veenma D, Hogue J. et al. Genomic alterations that contribute to the development of isolated and non-isolated congenital diaphragmatic hernia. J Med Genet 2011; 48 (05) 299-307
  • 53 Yu L, Hernan RR, Wynn J, Chung WK. The influence of genetics in congenital diaphragmatic hernia. Semin Perinatol 2020; 44 (01) 151169
  • 54 Matsunami N, Shanmugam H, Baird L. et al. Germline but not somatic de novo mutations are common in human congenital diaphragmatic hernia. Birth Defects Res 2018; 110 (07) 610-617
  • 55 Bogenschutz EL, Fox ZD, Farrell A. et al. Deep whole-genome sequencing of multiple proband tissues and parental blood reveals the complex genetic etiology of congenital diaphragmatic hernias. HGG Adv 2020; 1 (01) 100008
  • 56 Qi H, Yu L, Zhou X. et al. De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders. PLoS Genet 2018; 14 (12) e1007822
  • 57 Qiao L, Xu L, Yu L. et al. Rare and de novo variants in 827 congenital diaphragmatic hernia probands implicate LONP1 as candidate risk gene. Am J Hum Genet 2021; 108 (10) 1964-1980
  • 58 Scott TM, Campbell IM, Hernandez-Garcia A. et al. Clinical exome sequencing data reveal high diagnostic yields for congenital diaphragmatic hernia plus (CDH+) and new phenotypic expansions involving CDH. J Med Genet 2021:jmedgenet-2020-107317
  • 59 Hosokawa S, Takahashi N, Kitajima H, Nakayama M, Kosaki K, Okamoto N. Brachmann-de Lange syndrome with congenital diaphragmatic hernia and NIPBL gene mutation. Congenit Anom (Kyoto) 2010; 50 (02) 129-132
  • 60 Devriendt K, Deloof E, Moerman P. et al. Diaphragmatic hernia in Denys-Drash syndrome. Am J Med Genet 1995; 57 (01) 97-101
  • 61 Antonius T, van Bon B, Eggink A, van der Burgt I, Noordam K, van Heijst A. Denys-Drash syndrome and congenital diaphragmatic hernia: another case with the 1097G > A(Arg366His) mutation. Am J Med Genet A 2008; 146A (04) 496-499
  • 62 Suri M, Kelehan P, O'neill D. et al. WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac and diaphragmatic malformations. Am J Med Genet A 2007; 143A (19) 2312-2320
  • 63 Denamur E, Bocquet N, Baudouin V. et al. WT1 splice-site mutations are rarely associated with primary steroid-resistant focal and segmental glomerulosclerosis. Kidney Int 2000; 57 (05) 1868-1872
  • 64 Schwab ME, Dong S, Lianoglou BR. et al. Exome sequencing of fetuses with congenital diaphragmatic hernia supports a causal role for NR2F2, PTPN11, and WT1 variants. Am J Surg 2021; S0002-9610 (21)00396-2
  • 65 Jacobs AM, Toudjarska I, Racine A, Tsipouras P, Kilpatrick MW, Shanske A. A recurring FBN1 gene mutation in neonatal Marfan syndrome. Arch Pediatr Adolesc Med 2002; 156 (11) 1081-1085
  • 66 Revencu N, Quenum G, Detaille T, Verellen G, De Paepe A, Verellen-Dumoulin C. Congenital diaphragmatic eventration and bilateral uretero-hydronephrosis in a patient with neonatal Marfan syndrome caused by a mutation in exon 25 of the FBN1 gene and review of the literature. Eur J Pediatr 2004; 163 (01) 33-37
  • 67 Stheneur C, Faivre L, Collod-Béroud G. et al. Prognosis factors in probands with an FBN1 mutation diagnosed before the age of 1 year. Pediatr Res 2011; 69 (03) 265-270
  • 68 Beck TF, Campeau PM, Jhangiani SN. et al. FBN1 contributing to familial congenital diaphragmatic hernia. Am J Med Genet A 2015; 167A (04) 831-836
  • 69 Srour M, Chitayat D, Caron V. et al. Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia. Am J Hum Genet 2013; 93 (04) 765-772
  • 70 Donnai D, Barrow M. Diaphragmatic hernia, exomphalos, absent corpus callosum, hypertelorism, myopia, and sensorineural deafness: a newly recognized autosomal recessive disorder?. Am J Med Genet 1993; 47 (05) 679-682
  • 71 Yano S, Baskin B, Bagheri A. et al. Familial Simpson-Golabi-Behmel syndrome: studies of X-chromosome inactivation and clinical phenotypes in two female individuals with GPC3 mutations. Clin Genet 2011; 80 (05) 466-471
  • 72 Hogue J, Shankar S, Perry H, Patel R, Vargervik K, Slavotinek A. A novel EFNB1 mutation (c.712delG) in a family with craniofrontonasal syndrome and diaphragmatic hernia. Am J Med Genet A 2010; 152A (10) 2574-2577
  • 73 Maas SM, Lombardi MP, van Essen AJ. et al. Phenotype and genotype in 17 patients with Goltz-Gorlin syndrome. J Med Genet 2009; 46 (10) 716-720
  • 74 Russell MK, Longoni M, Wells J. et al. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes. Proc Natl Acad Sci U S A 2012; 109 (08) 2978-2983
  • 75 Longoni M, High FA, Qi H. et al. Genome-wide enrichment of damaging de novo variants in patients with isolated and complex congenital diaphragmatic hernia. Hum Genet 2017; 136 (06) 679-691
  • 76 Yu L, Wynn J, Cheung YH. et al. Variants in GATA4 are a rare cause of familial and sporadic congenital diaphragmatic hernia. Hum Genet 2013; 132 (03) 285-292
  • 77 Longoni M, Russell MK, High FA. et al. Prevalence and penetrance of ZFPM2 mutations and deletions causing congenital diaphragmatic hernia. Clin Genet 2015; 87 (04) 362-367
  • 78 Brady PD, Van Houdt J, Callewaert B, Deprest J, Devriendt K, Vermeesch JR. Exome sequencing identifies ZFPM2 as a cause of familial isolated congenital diaphragmatic hernia and possibly cardiovascular malformations. Eur J Med Genet 2014; 57 (06) 247-252
  • 79 Beck TF, Veenma D, Shchelochkov OA. et al. Deficiency of FRAS1-related extracellular matrix 1 (FREM1) causes congenital diaphragmatic hernia in humans and mice. Hum Mol Genet 2013; 22 (05) 1026-1038
  • 80 Reiss I, Schaible T, van den Hout L. et al; CDH EURO Consortium. Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO Consortium consensus. Neonatology 2010; 98 (04) 354-364
  • 81 Slavotinek AM, Moshrefi A, Lopez Jiminez N. et al. Sequence variants in the HLX gene at chromosome 1q41-1q42 in patients with diaphragmatic hernia. Clin Genet 2009; 75 (05) 429-439
  • 82 Kantarci S, Ackerman KG, Russell MK. et al. Characterization of the chromosome 1q41q42.12 region, and the candidate gene DISP1, in patients with CDH. Am J Med Genet A 2010; 152A (10) 2493-2504
  • 83 Youssoufian H, Chance P, Tuck-Muller CM, Jabs EW. Association of a new chromosomal deletion [del(1)(q32q42)] with diaphragmatic hernia: assignment of a human ferritin gene. Hum Genet 1988; 78 (03) 267-270
  • 84 Kantarci S, Casavant D, Prada C. et al. Findings from aCGH in patients with congenital diaphragmatic hernia (CDH): a possible locus for Fryns syndrome. Am J Med Genet A 2006; 140 (01) 17-23
  • 85 Rosenfeld JA, Lacassie Y, El-Khechen D. et al. New cases and refinement of the critical region in the 1q41q42 microdeletion syndrome. Eur J Med Genet 2011; 54 (01) 42-49
  • 86 Shaffer LG, Theisen A, Bejjani BA. et al. The discovery of microdeletion syndromes in the post-genomic era: review of the methodology and characterization of a new 1q41q42 microdeletion syndrome. Genet Med 2007; 9 (09) 607-616
  • 87 Slavotinek AM, Moshrefi A, Davis R. et al. Array comparative genomic hybridization in patients with congenital diaphragmatic hernia: mapping of four CDH-critical regions and sequencing of candidate genes at 15q26.1-15q26.2. Eur J Hum Genet 2006; 14 (09) 999-1008
  • 88 Zeng S, Patil SR, Yankowitz J. Prenatal detection of mosaic trisomy 1q due to an unbalanced translocation in one fetus of a twin pregnancy following in vitro fertilization: a postzygotic error. Am J Med Genet A 2003; 120A (04) 464-469
  • 89 Ahmed AA, Gilbert-Barness E. A Fryns syndrome-like phenotype with mosaic t(1;22)(q12;p12) chromosomal translocation. Clin Dysmorphol 2004; 13 (02) 111-112
  • 90 Ahn HY, Shin JC, Kim YH. et al. Prenatal diagnosis of congenital diaphragmatic hernia in a fetus with 46,XY/46,X,-Y,+der(Y)t(Y;1)(q12;q12) mosaicism: a case report. J Korean Med Sci 2005; 20 (05) 895-898
  • 91 Otake K, Uchida K, Inoue M. et al. Congenital diaphragmatic hernia with a pure duplication of chromosome 1q: report of the first surviving case. Pediatr Surg Int 2009; 25 (09) 827-831
  • 92 Clark RD, Fenner-Gonzales M. Apparent Fryns syndrome in a boy with a tandem duplication of 1q24-31.2. Am J Med Genet 1989; 34 (03) 422-426
  • 93 Li C. A prenatally recognizable malformation syndrome associated with a recurrent post-zygotic chromosome rearrangement der(Y)t(Y;1)(q12:q21). Am J Med Genet A 2010; 152A (09) 2339-2341
  • 94 Christiansen LR, Lage JM, Wolff DJ, Pai GS, Harley RA. Mosaic duplication 1(q11q44) in an infant with nephroblastomatosis and mineralization of extraplacental membranes. Pediatr Dev Pathol 2005; 8 (01) 115-123
  • 95 Pacifici PG, Peter C, Yampolsky P, Koenen M, McArdle JJ, Witzemann V. Novel mouse model reveals distinct activity-dependent and -independent contributions to synapse development. PLoS One 2011; 6 (01) e16469
  • 96 Nagata K, Kiryu-Seo S, Maeda M, Yoshida K, Morita T, Kiyama H. Damage-induced neuronal endopeptidase is critical for presynaptic formation of neuromuscular junctions. J Neurosci 2010; 30 (20) 6954-6962
  • 97 Casas KA, Mononen TK, Mikail CN. et al. Chromosome 2q terminal deletion: report of 6 new patients and review of phenotype-breakpoint correlations in 66 individuals. Am J Med Genet A 2004; 130A (04) 331-339
  • 98 Brackley KJ, Kilby MD, Morton J, Whittle MJ, Knight SJ, Flint J. A case of recurrent congenital fetal anomalies associated with a familial subtelomeric translocation. Prenat Diagn 1999; 19 (06) 570-574
  • 99 Reddy KS, Flannery D, Farrer RJ. Microdeletion of chromosome sub-band 2q37.3 in two patients with abnormal situs viscerum. Am J Med Genet 1999; 84 (05) 460-468
  • 100 Callaway DA, Campbell IM, Stover SR. et al. Prioritization of candidate genes for congenital diaphragmatic hernia in a critical region on chromosome 4p16 using a machine-learning algorithm. J Pediatr Genet 2018; 7 (04) 164-173
  • 101 Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 2002; 22 (15) 5296-5307
  • 102 Tautz J, Veenma D, Eussen B. et al. Congenital diaphragmatic hernia and a complex heart defect in association with Wolf-Hirschhorn syndrome. Am J Med Genet A 2010; 152A (11) 2891-2894
  • 103 Basgul A, Kavak ZN, Akman I, Basgul A, Gokaslan H, Elcioglu N. Prenatal diagnosis of Wolf-Hirschhorn syndrome (4p-) in association with congenital diaphragmatic hernia, cystic hygroma and IUGR. Clin Exp Obstet Gynecol 2006; 33 (02) 105-106
  • 104 Howe DT, Kilby MD, Sirry H. et al. Structural chromosome anomalies in congenital diaphragmatic hernia. Prenat Diagn 1996; 16 (11) 1003-1009
  • 105 van Dooren MF, Brooks AS, Hoogeboom AJ. et al. Early diagnosis of Wolf-Hirschhorn syndrome triggered by a life-threatening event: congenital diaphragmatic hernia. Am J Med Genet A 2004; 127A (02) 194-196
  • 106 Sachs M, Brohmann H, Zechner D. et al. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 2000; 150 (06) 1375-1384
  • 107 Young RS, Palmer CG, Bender HA, Weaver DD, Hodes ME. Brief cytogenetic case report: a 4.5-year-old girl with deletion 4q syndrome–de novo, 46,XX, del(4) (pter leads to q31:). Am J Med Genet 1982; 12 (01) 103-107
  • 108 Park Y, Gong G, Choe G, Yu E, Kim KS, Lee I. Jarcho-Levin syndrome–a report of an autopsy case with cytogenetic analysis. J Korean Med Sci 1993; 8 (06) 471-475
  • 109 Wat MJ, Beck TF, Hernández-García A. et al. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1. Hum Mol Genet 2012; 21 (18) 4115-4125
  • 110 Longoni M, Lage K, Russell MK. et al. Congenital diaphragmatic hernia interval on chromosome 8p23.1 characterized by genetics and protein interaction networks. Am J Med Genet A 2012; 158A (12) 3148-3158
  • 111 Pecile V, Petroni MG, Fertz MC, Filippi G. Deficiency of distal 8p–report of two cases and review of the literature. Clin Genet 1990; 37 (04) 271-278
  • 112 Borys D, Taxy JB. Congenital diaphragmatic hernia and chromosomal anomalies: autopsy study. Pediatr Dev Pathol 2004; 7 (01) 35-38
  • 113 Shimokawa O, Miyake N, Yoshimura T. et al. Molecular characterization of del(8)(p23.1p23.1) in a case of congenital diaphragmatic hernia. Am J Med Genet A 2005; 136 (01) 49-51
  • 114 Slavotinek A, Lee SS, Davis R. et al. Fryns syndrome phenotype caused by chromosome microdeletions at 15q26.2 and 8p23.1. J Med Genet 2005; 42 (09) 730-736
  • 115 López I, Bafalliu JA, Bernabé MC, García F, Costa M, Guillén-Navarro E. Prenatal diagnosis of de novo deletions of 8p23.1 or 15q26.1 in two fetuses with diaphragmatic hernia and congenital heart defects. Prenat Diagn 2006; 26 (06) 577-580
  • 116 Wat MJ, Shchelochkov OA, Holder AM. et al. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 2009; 149A (08) 1661-1677
  • 117 Arrington CB, Bleyl SB, Matsunami N. et al. A family-based paradigm to identify candidate chromosomal regions for isolated congenital diaphragmatic hernia. Am J Med Genet A 2012; 158A (12) 3137-3147
  • 118 Keitges EA, Pasion R, Burnside RD. et al. Prenatal diagnosis of two fetuses with deletions of 8p23.1, critical region for congenital diaphragmatic hernia and heart defects. Am J Med Genet A 2013; 161A (07) 1755-1758
  • 119 Ackerman KG, Herron BJ, Vargas SO. et al. Fog2 is required for normal diaphragm and lung development in mice and humans. PLoS Genet 2005; 1 (01) 58-65
  • 120 Kuechler A, Buysse K, Clayton-Smith J. et al. Five patients with novel overlapping interstitial deletions in 8q22.2q22.3. Am J Med Genet A 2011; 155A (08) 1857-1864
  • 121 Temple IK, Barber JC, James RS, Burge D. Diaphragmatic herniae and translocations involving 8q22 in two patients. J Med Genet 1994; 31 (09) 735-737
  • 122 Meech R, Gonzalez KN, Barro M. et al. Barx2 is expressed in satellite cells and is required for normal muscle growth and regeneration. Stem Cells 2012; 30 (02) 253-265
  • 123 Klaassens M, Scott DA, van Dooren M. et al. Congenital diaphragmatic hernia associated with duplication of 11q23-qter. Am J Med Genet A 2006; 140 (14) 1580-1586
  • 124 Fernández-Perea Y, García-Díaz L, Sánchez J, Antiñolo G, Borrego S. Ultrasound, echocardiography, MRI, and genetic analysis of a fetus with congenital diaphragmatic hernia and partial 11q trisomy. Case Rep Obstet Gynecol 2017; 2017: 1471704
  • 125 Park JP, McDermet MK, Doody AM, Marin-Padilla JM, Moeschler JB, Wurster-Hill DH. Familial t(11;13)(q21;q14) and the duplication 11q, 13q phenotype. Am J Med Genet 1993; 45 (01) 46-48
  • 126 Zakowski MF, Wright Y, Ricci Jr A. Pericardial agenesis and focal aplasia cutis in tetrasomy 12p (Pallister-Killian syndrome). Am J Med Genet 1992; 42 (03) 323-325
  • 127 Wilkens A, Liu H, Park K. et al. Novel clinical manifestations in Pallister-Killian syndrome: comprehensive evaluation of 59 affected individuals and review of previously reported cases. Am J Med Genet A 2012; 158A (12) 3002-3017
  • 128 Ozlü T, Ocak Z, Ozyurt O. Prenatal diagnosis of Pallister Killian Syndrome in a fetus with congenital diaphragmatic hernia, short limbs, and increased nuchal translucency. Taiwan J Obstet Gynecol 2014; 53 (03) 404-405
  • 129 Jamuar S, Lai A, Unger S, Nishimura G. Clinical and radiological findings in Pallister-Killian syndrome. Eur J Med Genet 2012; 55 (03) 167-172
  • 130 Tidrenczel Z, P Tardy E, Sarkadi E, Simon J, Beke A, Demeter J. [Prenatally diagnosed case of Pallister‒Killian syndrome]. Orv Hetil 2018; 159 (21) 847-852
  • 131 Libotte F, Bizzoco D, Gabrielli I. et al. Pallister-Killian syndrome: cytogenetics and molecular investigations of mosaic tetrasomy 12p in prenatal chorionic villus and in amniocytes. Strategy of prenatal diagnosis. Taiwan J Obstet Gynecol 2016; 55 (06) 863-866
  • 132 Karaman B, Kayserili H, Ghanbari A. et al. Pallister-Killian syndrome: clinical, cytogenetic and molecular findings in 15 cases. Mol Cytogenet 2018; 11: 45
  • 133 Enns GM, Cox VA, Goldstein RB, Gibbs DL, Harrison MR, Golabi M. Congenital diaphragmatic defects and associated syndromes, malformations, and chromosome anomalies: a retrospective study of 60 patients and literature review. Am J Med Genet 1998; 79 (03) 215-225
  • 134 High FA, Bhayani P, Wilson JM, Bult CJ, Donahoe PK, Longoni M. De novo frameshift mutation in COUP-TFII (NR2F2) in human congenital diaphragmatic hernia. Am J Med Genet A 2016; 170 (09) 2457-2461
  • 135 Klaassens M, van Dooren M, Eussen HJ. et al. Congenital diaphragmatic hernia and chromosome 15q26: determination of a candidate region by use of fluorescent in situ hybridization and array-based comparative genomic hybridization. Am J Hum Genet 2005; 76 (05) 877-882
  • 136 Bettelheim D, Hengstschläger M, Drahonsky R, Eppel W, Bernaschek G. Two cases of prenatally diagnosed diaphragmatic hernia accompanied by the same undescribed chromosomal deletion (15q24 de novo). Clin Genet 1998; 53 (04) 319-320
  • 137 Mosca AL, Pinson L, Andrieux J. et al. Refining the critical region for congenital diaphragmatic hernia on chromosome 15q26 from the study of four fetuses. Prenat Diagn 2011; 31 (09) 912-914
  • 138 Jaillard S, Loget P, Lucas J. et al. Terminal 6.9 Mb deletion of chromosome 15q, associated with a structurally abnormal X chromosome in a patient with congenital diaphragmatic hernia and heart defect. Eur J Med Genet 2011; 54 (02) 186-188
  • 139 Biggio Jr JR, Descartes MD, Carroll AJ, Holt RL. Congenital diaphragmatic hernia: is 15q26.1-26.2 a candidate locus?. Am J Med Genet A 2004; 126A (02) 183-185
  • 140 Brady PD, DeKoninck P, Fryns JP, Devriendt K, Deprest JA, Vermeesch JR. Identification of dosage-sensitive genes in fetuses referred with severe isolated congenital diaphragmatic hernia. Prenat Diagn 2013; 33 (13) 1283-1292
  • 141 Castiglia L, Fichera M, Romano C. et al. Narrowing the candidate region for congenital diaphragmatic hernia in chromosome 15q26: contradictory results. Am J Hum Genet 2005; 77 (05) 892-894 , author reply 894–895
  • 142 Fernandez BA, Roberts W, Chung B. et al. Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder. J Med Genet 2010; 47 (03) 195-203
  • 143 Strong M, Garabedian M, Pettigrew A, Barron N, Hansen W. Prenatal diagnosis of partial trisomy 16p and its association with congenital diaphragmatic hernia. Prenat Diagn 2013; 33 (08) 797-799
  • 144 Yap P, McGillivray G, Norris F, Said JM, Kornman L, Stark Z. Fetal phenotype of 17q12 microdeletion syndrome: renal echogenicity and congenital diaphragmatic hernia in 2 cases. Prenat Diagn 2015; 35 (12) 1265-1267
  • 145 Goumy C, Laffargue F, Eymard-Pierre E. et al. Congenital diaphragmatic hernia may be associated with 17q12 microdeletion syndrome. Am J Med Genet A 2015; 167A (01) 250-253
  • 146 Hendrix NW, Clemens M, Canavan TP, Surti U, Rajkovic A. Prenatally diagnosed 17q12 microdeletion syndrome with a novel association with congenital diaphragmatic hernia. Fetal Diagn Ther 2012; 31 (02) 129-133
  • 147 Kammoun M, Souche E, Brady P. et al. Genetic profile of isolated congenital diaphragmatic hernia revealed by targeted next-generation sequencing. Prenat Diagn 2018; 38 (09) 654-663
  • 148 Gupta N, Shastri S, Singh PK. et al. Nasopharyngeal teratoma, congenital diaphragmatic hernia and Dandy-Walker malformation - a yet uncharacterized syndrome. Clin Genet 2016; 90 (05) 470-471
  • 149 Tan TY, Collins A, James PA. et al. Phenotypic variability of distal 22q11.2 copy number abnormalities. Am J Med Genet A 2011; 155A (07) 1623-1633
  • 150 Unolt M, DiCairano L, Schlechtweg K. et al. Congenital diaphragmatic hernia in 22q11.2 deletion syndrome. Am J Med Genet A 2017; 173 (01) 135-142
  • 151 Bétrémieux P, Lionnais S, Beuchée A. et al. Perinatal management and outcome of prenatally diagnosed congenital diaphragmatic hernia: a 1995-2000 series in Rennes University Hospital. Prenat Diagn 2002; 22 (11) 988-994
  • 152 Oskarsdóttir S, Persson C, Eriksson BO, Fasth A. Presenting phenotype in 100 children with the 22q11 deletion syndrome. Eur J Pediatr 2005; 164 (03) 146-153
  • 153 Stark Z, Behrsin J, Burgess T. et al. SNP microarray abnormalities in a cohort of 28 infants with congenital diaphragmatic hernia. Am J Med Genet A 2015; 167A (10) 2319-2326
  • 154 Taylor J, Aftimos S. Congenital diaphragmatic hernia is a feature of Opitz G/BBB syndrome. Clin Dysmorphol 2010; 19 (04) 225-226
  • 155 Plaja A, Vendrell T, Sarret E, Torán N, Mediano C. Terminal deletion of Xp in a dysmorphic anencephalic fetus. Prenat Diagn 1994; 14 (05) 410-412
  • 156 Qidwai K, Pearson DM, Patel GS. et al. Deletions of Xp provide evidence for the role of holocytochrome C-type synthase (HCCS) in congenital diaphragmatic hernia. Am J Med Genet A 2010; 152A (06) 1588-1590
  • 157 Allanson J, Richter S. Linear skin defects and congenital microphthalmia: a new syndrome at Xp22.2. J Med Genet 1991; 28 (02) 143-144
  • 158 Kantarci S, Al-Gazali L, Hill RS. et al. Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 2007; 39 (08) 957-959
  • 159 Gofin Y, Mackay LP, Machol K. et al. Evidence that FGFRL1 contributes to congenital diaphragmatic hernia development in humans. Am J Med Genet A 2021; 185 (03) 836-840
  • 160 Bleyl SB, Moshrefi A, Shaw GM. et al. Candidate genes for congenital diaphragmatic hernia from animal models: sequencing of FOG2 and PDGFRalpha reveals rare variants in diaphragmatic hernia patients. Eur J Hum Genet 2007; 15 (09) 950-958
  • 161 Kaya TB, Aydemir O, Ceylaner S, Ceylaner G, Tekin AN. Isolated congenital diaphragm hernia associated with homozygous SLIT3 gene variant in dizygous twins. Eur J Med Genet 2021; 64 (07) 104215
  • 162 Wilmink FA, Papatsonis DN, Grijseels EW, Wessels MW. Cornelia de lange syndrome: a recognizable fetal phenotype. Fetal Diagn Ther 2009; 26 (01) 50-53
  • 163 Banait N, Fenton A, Splitt M. Cornelia de Lange syndrome due to mosaic NIPBL mutation: antenatal presentation with sacrococcygeal teratoma. BMJ Case Rep 2015; 2015: bcr2015211006
  • 164 Hague J, Twiss P, Mead Z, Park SM. Clinical diagnosis of classical Cornelia De Lange syndrome made from postmortem examination of second trimester fetus with novel NIPBL pathogenic variant. Pediatr Dev Pathol 2019; 22 (05) 475-479
  • 165 Jongmans MC, Admiraal RJ, van der Donk KP. et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet 2006; 43 (04) 306-314
  • 166 Rossetti LZ, Glinton K, Yuan B. et al. Review of the phenotypic spectrum associated with haploinsufficiency of MYRF. Am J Med Genet A 2019; 179 (07) 1376-1382
  • 167 Jin SC, Homsy J, Zaidi S. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet 2017; 49 (11) 1593-1601
  • 168 Pinz H, Pyle LC, Li D. et al. De novo variants in Myelin regulatory factor (MYRF) as candidates of a new syndrome of cardiac and urogenital anomalies. Am J Med Genet A 2018; 176 (04) 969-972
  • 169 McVeigh TP, Banka S, Reardon W. Kabuki syndrome: expanding the phenotype to include microphthalmia and anophthalmia. Clin Dysmorphol 2015; 24 (04) 135-139
  • 170 Li Y, Bögershausen N, Alanay Y. et al. A mutation screen in patients with Kabuki syndrome. Hum Genet 2011; 130 (06) 715-724
  • 171 Zarate YA, Zhan H, Jones JR. Infrequent manifestations of Kabuki syndrome in a patient with novel MLL2 mutation. Mol Syndromol 2012; 3 (04) 180-184
  • 172 Jordan VK, Beck TF, Hernandez-Garcia A. et al. The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia. Hum Mol Genet 2018; 27 (12) 2064-2075
  • 173 Chassaing N, Ragge N, Kariminejad A. et al. Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia. Clin Genet 2013; 83 (03) 244-250
  • 174 Pasutto F, Sticht H, Hammersen G. et al. Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Hum Genet 2007; 80 (03) 550-560
  • 175 Chassaing N, Golzio C, Odent S. et al. Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia. Hum Mutat 2009; 30 (05) E673-E681
  • 176 Golzio C, Martinovic-Bouriel J, Thomas S. et al. Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 2007; 80 (06) 1179-1187
  • 177 West B, Bove KE, Slavotinek AM. Two novel STRA6 mutations in a patient with anophthalmia and diaphragmatic eventration. Am J Med Genet A 2009; 149A (03) 539-542
  • 178 Bashamboo A, Eozenou C, Jorgensen A. et al. Loss of function of the nuclear receptor NR2F2, encoding COUP-TF2, causes testis development and cardiac defects in 46,XX children. Am J Hum Genet 2018; 102 (03) 487-493
  • 179 McInerney-Leo AM, Harris JE, Gattas M. et al. Fryns syndrome associated with recessive mutations in PIGN in two separate families. Hum Mutat 2016; 37 (07) 695-702
  • 180 Alessandri JL, Gordon CT, Jacquemont ML. et al. Recessive loss of function PIGN alleles, including an intragenic deletion with founder effect in La Réunion Island, in patients with Fryns syndrome. Eur J Hum Genet 2018; 26 (03) 340-349
  • 181 Brady PD, Delle Chiaie B, Christenhusz G. et al. A prospective study of the clinical utility of prenatal chromosomal microarray analysis in fetuses with ultrasound abnormalities and an exploration of a framework for reporting unclassified variants and risk factors. Genet Med 2014; 16 (06) 469-476
  • 182 Hughes-Benzie RM, Pilia G, Xuan JY. et al. Simpson-Golabi-Behmel syndrome: genotype/phenotype analysis of 18 affected males from 7 unrelated families. Am J Med Genet 1996; 66 (02) 227-234
  • 183 Veugelers M, Cat BD, Muyldermans SY. et al. Mutational analysis of the GPC3/GPC4 glypican gene cluster on Xq26 in patients with Simpson-Golabi-Behmel syndrome: identification of loss-of-function mutations in the GPC3 gene. Hum Mol Genet 2000; 9 (09) 1321-1328
  • 184 Li M, Shuman C, Fei YL. et al. GPC3 mutation analysis in a spectrum of patients with overgrowth expands the phenotype of Simpson-Golabi-Behmel syndrome. Am J Med Genet 2001; 102 (02) 161-168
  • 185 Cottereau E, Mortemousque I, Moizard MP. et al. Phenotypic spectrum of Simpson-Golabi-Behmel syndrome in a series of 42 cases with a mutation in GPC3 and review of the literature. Am J Med Genet C Semin Med Genet 2013; 163C (02) 92-105
  • 186 Slavotinek AM. Single gene disorders associated with congenital diaphragmatic hernia. Am J Med Genet C Semin Med Genet 2007; 145C (02) 172-183
  • 187 Twigg SR, Kan R, Babbs C. et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci U S A 2004; 101 (23) 8652-8657
  • 188 Twigg SR, Matsumoto K, Kidd AM. et al. The origin of EFNB1 mutations in craniofrontonasal syndrome: frequent somatic mosaicism and explanation of the paucity of carrier males. Am J Hum Genet 2006; 78 (06) 999-1010
  • 189 Vasudevan PC, Twigg SR, Mulliken JB, Cook JA, Quarrell OW, Wilkie AO. Expanding the phenotype of craniofrontonasal syndrome: two unrelated boys with EFNB1 mutations and congenital diaphragmatic hernia. Eur J Hum Genet 2006; 14 (07) 884-887