Digestive Disease Interventions 2022; 06(01): 019-036
DOI: 10.1055/s-0041-1741521
Review Article

Microwave Ablation of Hepatocellular Carcinoma and Liver Metastases: Challenges, Opportunities, and Future Directions

1   University of Wisconsin Hospital and Clinics, Madison, Wisconsin
,
1   University of Wisconsin Hospital and Clinics, Madison, Wisconsin
,
Timothy J. Ziemlewicz
1   University of Wisconsin Hospital and Clinics, Madison, Wisconsin
,
1   University of Wisconsin Hospital and Clinics, Madison, Wisconsin
,
J. Louis Hinshaw
1   University of Wisconsin Hospital and Clinics, Madison, Wisconsin
,
Shane A. Wells
1   University of Wisconsin Hospital and Clinics, Madison, Wisconsin
,
1   University of Wisconsin Hospital and Clinics, Madison, Wisconsin
,
Fred T. Lee Jr
1   University of Wisconsin Hospital and Clinics, Madison, Wisconsin
› Author Affiliations

Abstract

Chronic liver disease predisposes patients to the development of hepatocellular carcinoma (HCC), and the degree of liver dysfunction helps dictate the management of patients with primary hepatic malignancy. Percutaneous ablation is an increasingly utilized treatment modality for patients with hepatocellular carcinoma who are poor surgical candidates, particularly when treatment goals include sparing hepatic parenchyma in the setting of hepatic dysfunction. Various thermal and non-thermal ablation modalities have historically been used to treat HCC. With advances in ablation technology, modern microwave (MW) ablation systems have become increasingly utilized in HCC as well as hepatic metastatic disease management due to larger and more predictable ablation zones. The evolution of ablation technology has resulted in the growth of ablation as a safe and effective treatment option for patients with primary and secondary liver tumors.



Publication History

Received: 24 May 2021

Accepted: 24 November 2021

Article published online:
21 January 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68 (06) 394-424 DOI: 10.3322/caac.21492.
  • 2 Fontana RJ, Hamidullah H, Nghiem H. et al. Percutaneous radiofrequency thermal ablation of hepatocellular carcinoma: a safe and effective bridge to liver transplantation. Liver Transpl 2002; 8 (12) 1165-1174 DOI: 10.1053/jlts.2002.36394.
  • 3 Vasnani R, Ginsburg M, Ahmed O. et al. Radiofrequency and microwave ablation in combination with transarterial chemoembolization induce equivalent histopathologic coagulation necrosis in hepatocellular carcinoma patients bridged to liver transplantation. Hepatobiliary Surg Nutr 2016; 5 (03) 225-233 DOI: 10.21037/hbsn.2016.01.05.
  • 4 Lee MW, Raman SS, Asvadi NH. et al. Radiofrequency ablation of hepatocellular carcinoma as bridge therapy to liver transplantation: A 10-year intention-to-treat analysis. Hepatology 2017; 65 (06) 1979-1990 DOI: 10.1002/hep.29098.
  • 5 Horn SR, Stoltzfus KC, Lehrer EJ. et al. Epidemiology of liver metastases. Cancer Epidemiol 2020; 67: 101760 DOI: 10.1016/J.CANEP.2020.101760.
  • 6 Engstrand J, Nilsson H, Strömberg C, Jonas E, Freedman J. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer 2018; 18 (01) 78
  • 7 Chen M-S, Li J-Q, Zheng Y. et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006; 243 (03) 321-328 DOI: 10.1097/01.sla.0000201480.65519.b8.
  • 8 Lü MD, Kuang M, Liang LJ. et al. [Surgical resection versus percutaneous thermal ablation for early-stage hepatocellular carcinoma: a randomized clinical trial]. Zhonghua Yi Xue Za Zhi 2006; 86 (12) 801-805
  • 9 Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258 (02) 351-369 DOI: 10.1148/radiol.10081634.
  • 10 Shimada K, Sakamoto Y, Esaki M, Kosuge T. Role of the width of the surgical margin in a hepatectomy for small hepatocellular carcinomas eligible for percutaneous local ablative therapy. Am J Surg 2008; 195 (06) 775-781
  • 11 Larson TR, Bostwick DG, Corica A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissue in patients with benign prostatic hyperplasia. Urology 1996; 47 (04) 463-469 DOI: 10.1016/S0090-4295(99)80478-6.
  • 12 Mertyna P, Hines-Peralta A, Liu ZJ, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol 2007; 18 (05) 647-654 DOI: 10.1016/j.jvir.2007.02.033.
  • 13 Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee Jr FT. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 2005; 236 (01) 132-139 DOI: 10.1148/radiol.2361031249.
  • 14 Lu DSK, Raman SS, Vodopich DJ, Wang M, Sayre J, Lassman C. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the “heat sink” effect. AJR Am J Roentgenol 2002; 178 (01) 47-51 DOI: 10.2214/ajr.178.1.1780047.
  • 15 Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?. Curr Probl Diagn Radiol 2009; 38 (03) 135-143 DOI: 10.1067/j.cpradiol.2007.10.001.
  • 16 Harari CM, Magagna M, Bedoya M. et al. Microwave ablation: Comparison of simultaneous and sequential activation of multiple antennas in liver model systems. Radiology 2016; 278 (01) 95-103 DOI: 10.1148/radiol.2015142151.
  • 17 Brace CL, Laeseke PF, Sampson LA, Frey TM, van der Weide DW, Lee Jr FT. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model. Radiology 2007; 244 (01) 151-156 DOI: 10.1148/radiol.2441052054.
  • 18 Lubner MG, Ziemlewicz TJ, Hinshaw JL, Lee Jr FT, Sampson LA, Brace CL. Creation of short microwave ablation zones: in vivo characterization of single and paired modified triaxial antennas. J Vasc Interv Radiol 2014; 25 (10) 1633-1640 DOI: 10.1016/j.jvir.2014.06.032.
  • 19 Vietti Violi N, Duran R, Guiu B. et al. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: a randomised controlled phase 2 trial. Lancet Gastroenterol Hepatol 2018; 3 (05) 317-325 DOI: 10.1016/S2468-1253(18)30029-3.
  • 20 Kamal A, Elmoety AAA, Rostom YAM, Shater MS, Lashen SA. Percutaneous radiofrequency versus microwave ablation for management of hepatocellular carcinoma: a randomized controlled trial. J Gastrointest Oncol 2019; 10 (03) 562-571 DOI: 10.21037/JGO.2019.01.34.
  • 21 Tan W, Deng Q, Lin S, Wang Y, Xu G. Comparison of microwave ablation and radiofrequency ablation for hepatocellular carcinoma: a systematic review and meta-analysis. Int J Hyperthermia 2019; 36 (01) 264-272
  • 22 Bonne L, De Paepe K, Fotiadis N. et al. Percutaneous radiofrequency versus microwave ablation for the treatment of colorectal liver metastases. J Clin Oncol 2018; 36 (04) 401
  • 23 Shady W, Petre EN, Do KG. et al. Percutaneous Microwave versus Radiofrequency Ablation of Colorectal Liver Metastases: Ablation with Clear Margins (A0) Provides the Best Local Tumor Control. J Vasc Interv Radiol 2018; 29 (02) 268-275.e1 DOI: 10.1016/J.JVIR.2017.08.021.
  • 24 Laimer G, Jaschke N, Schullian P. et al. Volumetric assessment of the periablational safety margin after thermal ablation of colorectal liver metastases. Eur Radiol 2021; 31 (09) 6489-6499
  • 25 Knott EA, Ziemlewicz TJ, Lubner SJ. et al. Microwave ablation for colorectal cancer metastasis to the liver: a single-center retrospective analysis. J Gastrointest Oncol 2021; 12 (04) 1454-1469 DOI: 10.21037/JGO-21-159.
  • 26 Cheng JCH, Wu JK, Huang CM. et al. Radiation-induced liver disease after radiotherapy for hepatocellular carcinoma: clinical manifestation and dosimetric description. Radiother Oncol 2002; 63 (01) 41-45 DOI: 10.1016/S0167-8140(02)00061-0.
  • 27 Kellock T, Liang T, Harris A. et al. Stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma: imaging evaluation post treatment. Br J Radiol 2018; 91 (1085): 20170118
  • 28 Massey C, Gaspar L. Sequential Phase I and II Trials of Stereotactic Body Radiotherapy for Locally Advanced Hepatocellular Carcinoma Related papers Stereot actic body radiation therapy for hepatocellular carcinoma Sameh Hashem Multi-Institut ional Phase I/II Trial of Stereotactic Body Radiation Therapy for Liver Metastases. City Hope Radiat Oncol 2013
  • 29 Wang PM, Chung NN, Hsu WC, Chang FL, Jang CJ, Scorsetti M. Stereotactic body radiation therapy in hepatocellular carcinoma: Optimal treatment strategies based on liver segmentation and functional hepatic reserve. Rep Pract Oncol Radiother 2015; 20 (06) 417-424 DOI: 10.1016/J.RPOR.2015.03.005.
  • 30 Jang WI, Kim MS, Bae SH. et al. High-dose stereotactic body radiotherapy correlates increased local control and overall survival in patients with inoperable hepatocellular carcinoma. Radiat Oncol 2013; 8 (01) 250
  • 31 Cárdenes HR, Price TR, Perkins SM. et al. Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin Transl Oncol 2010; 12 (03) 218-225
  • 32 Ten Haken RK, Balter JM, Marsh LH, Robertson JM, Lawrence TS. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int J Radiat Oncol Biol Phys 1997; 38 (03) 613-617 DOI: 10.1016/S0360-3016(97)00009-6.
  • 33 Eccles CL, Patel R, Simeonov AK, Lockwood G, Haider M, Dawson LA. Comparison of liver tumor motion with and without abdominal compression using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2011; 79 (02) 602-608 DOI: 10.1016/J.IJROBP.2010.04.028.
  • 34 Yoon K, Kwak J, Cho B. et al. Gated Volumetric-Modulated Arc Therapy vs. Tumor-Tracking CyberKnife Radiotherapy as Stereotactic Body Radiotherapy for Hepatocellular Carcinoma: A Dosimetric Comparison Study Focused on the Impact of Respiratory Motion Managements. PLoS One 2016; 11 (11) e0166927 DOI: 10.1371/JOURNAL.PONE.0166927.
  • 35 Wahl DR, Stenmark MH, Tao Y. et al. Outcomes after Stereotactic Body Radiotherapy or Radiofrequency Ablation for Hepatocellular Carcinoma. J Clin Oncol 2016; 34 (05) 452-459
  • 36 Pompili M, Mirante VG, Rondinara G. et al. Percutaneous ablation procedures in cirrhotic patients with hepatocellular carcinoma submitted to liver transplantation: Assessment of efficacy at explant analysis and of safety for tumor recurrence. Liver Transpl 2005; 11 (09) 1117-1126 DOI: 10.1002/LT.20469.
  • 37 Sapisochin G, Barry A, Doherty M. et al. Stereotactic body radiotherapy vs. TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma. An intention-to-treat analysis. J Hepatol 2017; 67 (01) 92-99 DOI: 10.1016/J.JHEP.2017.02.022.
  • 38 Scorsetti M, Comito T, Clerici E. et al. Phase II trial on SBRT for unresectable liver metastases: long-term outcome and prognostic factors of survival after 5 years of follow-up. Radiat Oncol 2018; 13 (01) 234
  • 39 Scorsetti M, Comito T, Tozzi A. et al. Final results of a phase II trial for stereotactic body radiation therapy for patients with inoperable liver metastases from colorectal cancer. J Cancer Res Clin Oncol 2015; 141 (03) 543-553
  • 40 Chang DT, Swaminath A, Kozak M. et al. Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer 2011; 117 (17) 4060-4069 DOI: 10.1002/CNCR.25997.
  • 41 Schefter TE, Kavanagh BD, Timmerman RD, Cardenes HR, Baron A, Gaspar LE. A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys 2005; 62 (05) 1371-1378 DOI: 10.1016/J.IJROBP.2005.01.002.
  • 42 Jackson WC, Tao Y, Mendiratta-Lala M. et al. Comparison of Stereotactic Body Radiation Therapy and Radiofrequency Ablation in the Treatment of Intrahepatic Metastases. Int J Radiat Oncol Biol Phys 2018; 100 (04) 950-958 DOI: 10.1016/J.IJROBP.2017.12.014.
  • 43 Benson AB, D'Angelica MI, Abbott DE. et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19 (05) 541-565 DOI: 10.6004/JNCCN.2021.0022.
  • 44 Chung DY, Tse DM, Boardman P. et al. High-frequency jet ventilation under general anesthesia facilitates CT-guided lung tumor thermal ablation compared with normal respiration under conscious analgesic sedation. J Vasc Interv Radiol 2014; 25 (09) 1463-1469 DOI: 10.1016/j.jvir.2014.02.026.
  • 45 Denys A, Lachenal Y, Duran R, Chollet-Rivier M, Bize P. Use of high-frequency jet ventilation for percutaneous tumor ablation. Cardiovasc Intervent Radiol 2014; 37 (01) 140-146 DOI: 10.1007/s00270-013-0620-4.
  • 46 Lee JK, Siripongsakun S, Bahrami S, Raman SS, Sayre J, Lu DS. Microwave ablation of liver tumors: degree of tissue contraction as compared to RF ablation. Abdom Radiol (NY) 2016; 41 (04) 659-666 DOI: 10.1007/s00261-016-0725-8.
  • 47 Brace CL, Diaz TA, Hinshaw JL, Lee Jr FT. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J Vasc Interv Radiol 2010; 21 (08) 1280-1286 DOI: 10.1016/j.jvir.2010.02.038.
  • 48 Lyons GR, Pua BB. Ablation Planning Software for Optimizing Treatment: Challenges, Techniques, and Applications. Tech Vasc Interv Radiol 2019; 22 (01) 21-25 DOI: 10.1053/J.TVIR.2018.10.005.
  • 49 Soulen MC, Sofocleous CT. Achieving Curative Ablation Outcomes: It Is All about the Imaging. Radiology 2021; 298 (01) 219-220
  • 50 Xu Z, Hall TL, Vlaisavljevich Jr E, Lee Jr FT. Histotripsy: the first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int J Hyperthermia 2021; 38 (01) 561-575
  • 51 Longo KC, Knott EA, Watson RF. et al. Robotically Assisted Sonic Therapy (RAST) for Noninvasive Hepatic Ablation in a Porcine Model: Mitigation of Body Wall Damage with a Modified Pulse Sequence. Cardiovasc Intervent Radiol 2019; 42 (07) 1016-1023
  • 52 Vlaisavljevich E, Owens G, Lundt J. et al. Non-Invasive Liver Ablation Using Histotripsy: Preclinical Safety Study in an In Vivo Porcine Model. Ultrasound Med Biol 2017; 43 (06) 1237-1251 DOI: 10.1016/J.ULTRASMEDBIO.2017.01.016.
  • 53 Vlaisavljevich E, Kim Y, Allen S. et al. Image-guided non-invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model. Ultrasound Med Biol 2013; 39 (08) 1398-1409 DOI: 10.1016/J.ULTRASMEDBIO.2013.02.005.
  • 54 Uhlig J, Sellers CM, Stein SM, Kim HS. Radiofrequency ablation versus surgical resection of hepatocellular carcinoma: contemporary treatment trends and outcomes from the United States National Cancer Database. Eur Radiol 2019; 29 (05) 2679-2689 DOI: 10.1007/s00330-018-5902-4.
  • 55 Feng K, Yan J, Li X. et al. A randomized controlled trial of radiofrequency ablation and surgical resection in the treatment of small hepatocellular carcinoma. J Hepatol 2012; 57 (04) 794-802 DOI: 10.1016/j.jhep.2012.05.007.
  • 56 Morimoto M, Numata K, Kondou M, Nozaki A, Morita S, Tanaka K. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma: a randomized controlled trial for determining the efficacy of radiofrequency ablation combined with transcatheter arterial chemoembolization. Cancer 2010; 116 (23) 5452-5460 DOI: 10.1002/cncr.25314.
  • 57 Peng Z-W, Zhang Y-J, Chen M-S. et al. Radiofrequency Ablation With or Without Transcatheter Arterial Chemoembolization in the Treatment of Hepatocellular Carcinoma: A Prospective Randomized Trial. J Clin Oncol 2013; 31 (04) 426-432 DOI: 10.1200/JCO.2012.46.1897.
  • 58 Lu Z, Wen F, Guo Q, Liang H, Mao X, Sun H. Radiofrequency ablation plus chemoembolization versus radiofrequency ablation alone for hepatocellular carcinoma: a meta-analysis of randomized-controlled trials. Eur J Gastroenterol Hepatol 2013; 25 (02) 187-194 DOI: 10.1097/MEG.0b013e32835a0a07.
  • 59 Ziemlewicz TJ, Hinshaw JL, Lubner MG. et al. Percutaneous microwave ablation of hepatocellular carcinoma with a gas-cooled system: initial clinical results with 107 tumors. J Vasc Interv Radiol 2015; 26 (01) 62-68 DOI: 10.1016/j.jvir.2014.09.012.
  • 60 Ahmed M, Solbiati L, Brace CL. et al; International Working Group on Image-guided Tumor Ablation, Interventional Oncology Sans Frontières Expert Panel, Technology Assessment Committee of the Society of Interventional Radiology, Standard of Practice Committee of the Cardiovascular and Interventional Radiological Society of Europe. Image-guided tumor ablation: standardization of terminology and reporting criteria–a 10-year update. Radiology 2014; 273 (01) 241-260 DOI: 10.1148/radiol.14132958.
  • 61 Ziemlewicz TJ, Hinshaw JL, Lubner MG. et al. Radiofrequency and microwave ablation in a porcine liver model: non-contrast CT and ultrasound radiologic-pathologic correlation. Int J Hyperthermia 2020; 37 (01) 799-807 DOI: 10.1080/02656736.2020.1784471.
  • 62 Hui TCH, Brace CL, Hinshaw JL. et al. Microwave ablation of the liver in a live porcine model: the impact of power, time and total energy on ablation zone size and shape. Int J Hyperthermia 2020; 37 (01) 668-676 DOI: 10.1080/02656736.2020.1774083.
  • 63 Ruiter SJS, Heerink WJ, de Jong KP. Liver microwave ablation: a systematic review of various FDA-approved systems. Eur Radiol 2019; 29 (08) 4026-4035 DOI: 10.1007/s00330-018-5842-z.
  • 64 Winokur RS, Du JY, Pua BB. et al. Characterization of in vivo ablation zones following percutaneous microwave ablation of the liver with two commercially available devices: are manufacturer published reference values useful?. J Vasc Interv Radiol 2014; 25 (12) 1939-1946.e1 DOI: 10.1016/j.jvir.2014.08.014.
  • 65 Velez E, Goldberg SN, Kumar G. et al. Hepatic Thermal Ablation: Effect of Device and Heating Parameters on Local Tissue Reactions and Distant Tumor Growth. Radiology 2016; 281 (03) 782-792 DOI: 10.1148/RADIOL.2016152241.
  • 66 Laeseke PF, Lee Jr FT, van der Weide DW, Brace CL. Multiple-Antenna Microwave Ablation: Spatially Distributing Power Improves Thermal Profiles and Reduces Invasiveness. J Interv Oncol 2009; 2 (02) 65-72
  • 67 Cazzato RL, De Marini P, Leclerc L. et al. Large nearly spherical ablation zones are achieved with simultaneous multi-antenna microwave ablation applied to treat liver tumours. Eur Radiol 2020; 30 (02) 971-975 DOI: 10.1007/s00330-019-06431-1.
  • 68 Laeseke PF, Sampson LA, Brace CL, Winter III TC, Fine JP, Lee Jr FT. Unintended thermal injuries from radiofrequency ablation: protection with 5% dextrose in water. AJR Am J Roentgenol 2006; 186 (5, Suppl) S249-S254 DOI: 10.2214/AJR.04.1240.
  • 69 Wang Y, Zhang L, Li Y, Wang W. Computed tomography-guided percutaneous microwave ablation with artificial ascites for problematic hepatocellular tumors. Int J Hyperthermia 2020; 37 (01) 256-262 DOI: 10.1080/02656736.2020.1736649.
  • 70 Campbell C, Lubner MG, Hinshaw JL, Muñoz del Rio A, Brace CL. Contrast media-doped hydrodissection during thermal ablation: optimizing contrast media concentration for improved visibility on CT images. AJR Am J Roentgenol 2012; 199 (03) 677-682 DOI: 10.2214/AJR.11.7999.
  • 71 Iwai S, Sakaguchi H, Fujii H. et al. Benefits of artificially induced pleural effusion and/or ascites for percutaneous radiofrequency ablation of hepatocellular carcinoma located on the liver surface and in the hepatic dome. Hepatogastroenterology 2012; 59 (114) 546-550 DOI: 10.5754/hge11988.
  • 72 Hinshaw JL, Laeseke PF, Winter III TC, Kliewer MA, Fine JP, Lee Jr FT. Radiofrequency ablation of peripheral liver tumors: intraperitoneal 5% dextrose in water decreases postprocedural pain. AJR Am J Roentgenol 2006; 186 )5, Suppl): S306-S310 DOI: 10.2214/AJR.05.0140.
  • 73 Huang DY, Yusuf GT, Daneshi M. et al. Contrast-enhanced ultrasound (CEUS) in abdominal intervention. Abdom Radiol (NY) 2018; 43 (04) 960-976
  • 74 Goto E, Tateishi R, Shiina S. et al. Hemorrhagic complications of percutaneous radiofrequency ablation for liver tumors. J Clin Gastroenterol 2010; 44 (05) 374-380 DOI: 10.1097/MCG.0b013e3181b7ed76.
  • 75 Wai OKH, Ng LFH, Yu PSM, Chan JCS. Post biopsy Liver Hemorrhage Successfully Controlled by Ultrasound-guided Percutaneous Microwave Ablation. J Clin Imaging Sci 2016; 6 (03) 34 DOI: 10.4103/2156-7514.190859.
  • 76 Bhatia SS, Spector S, Echenique A. et al. Is Antibiotic Prophylaxis for Percutaneous Radiofrequency Ablation (RFA) of Primary Liver Tumors Necessary? Results From a Single-Center Experience. Cardiovasc Intervent Radiol 2015; 38 (04) 922-928 DOI: 10.1007/s00270-014-1020-0.
  • 77 Welch BT, Schmitz JJ, Atwell TD. et al. Evaluation of infectious complications following percutaneous liver ablation in patients with bilioenteric anastomoses. Abdom Radiol (NY) 2017; 42 (05) 1579-1582 DOI: 10.1007/s00261-017-1051-5.
  • 78 Odisio BC, Richter M, Aloia TA. et al. Use of Prophylactic Antibiotics to Prevent Abscess Formation Following Hepatic Ablation in Patients with Prior Enterobiliary Manipulation. J Gastrointest Surg 2016; 20 (08) 1428-1434 DOI: 10.1007/s11605-016-3117-z.
  • 79 Spies JB, Rosen RJ, Lebowitz AS. Antibiotic prophylaxis in vascular and interventional radiology: a rational approach. Radiology 1988; 166 (02) 381-387 DOI: 10.1148/radiology.166.2.3275979.
  • 80 Chuang JH, Chen WJ, Lee SY, Chang NK. Prompt colonization of the hepaticojejunostomy and translocation of bacteria to liver after bile duct reconstruction. J Pediatr Surg 1998; 33 (08) 1215-1218 DOI: 10.1016/S0022-3468(98)90153-1.
  • 81 Liu P-H, Hsu C-Y, Hsia C-Y. et al. ALBI and PALBI grade predict survival for HCC across treatment modalities and BCLC stages in the MELD Era. J Gastroenterol Hepatol 2017; 32 (04) 879-886 DOI: 10.1111/jgh.13608.
  • 82 Stigliano R, Marelli L, Yu D, Davies N, Patch D, Burroughs AK. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev 2007; 33 (05) 437-447 DOI: 10.1016/j.ctrv.2007.04.001.
  • 83 Llovet JM, Vilana R, Brú C. et al; Barcelona Clínic Liver Cancer (BCLC) Group. Increased risk of tumor seeding after percutaneous radiofrequency ablation for single hepatocellular carcinoma. Hepatology 2001; 33 (05) 1124-1129 DOI: 10.1053/jhep.2001.24233.
  • 84 Jaskolka JD, Asch MR, Kachura JR. et al. Needle tract seeding after radiofrequency ablation of hepatic tumors. J Vasc Interv Radiol 2005; 16 (04) 485-491 DOI: 10.1097/01.RVI.0000151141.09597.5F.
  • 85 Yu J, Liang P, Yu XL, Cheng ZG, Han ZY, Dong BW. Needle track seeding after percutaneous microwave ablation of malignant liver tumors under ultrasound guidance: analysis of 14-year experience with 1462 patients at a single center. Eur J Radiol 2012; 81 (10) 2495-2499 DOI: 10.1016/j.ejrad.2011.10.019.
  • 86 Francica G, Meloni MF, de Sio I. et al. Radiofrequency and microwave ablation of subcapsular hepatocellular carcinoma accessed by direct puncture: Safety and efficacy. Eur J Radiol 2016; 85 (04) 739-743 DOI: 10.1016/j.ejrad.2016.01.020.
  • 87 Snoeren N, Jansen MC, Rijken AM. et al. Assessment of viable tumour tissue attached to needle applicators after local ablation of liver tumours. Dig Surg 2009; 26 (01) 56-62 DOI: 10.1159/000194946.
  • 88 Patel PA, Ingram L, Wilson IDC, Breen DJ. No-touch wedge ablation technique of microwave ablation for the treatment of subcapsular tumors in the liver. J Vasc Interv Radiol 2013; 24 (08) 1257-1262 DOI: 10.1016/j.jvir.2013.04.014.