Semin Neurol 2022; 42(01): 031-038
DOI: 10.1055/s-0041-1742242
Review Article

The Past, Present, and Future of Tele-EEG

Dona Kim Murphey
1   In Phase Neuro, LLC, Pearland, Texas
,
Eric R. Anderson
2   SOC Telemed, Gulfport, Florida
› Institutsangaben

Abstract

Tele-electroencephalogram (EEG) has become more pervasive over the last 20 years due to advances in technology, both independent of and driven by personnel shortages. The professionalization of EEG services has both limited growth and controlled the quality of tele-EEG. Growing data on the conditions that benefit from brain monitoring have informed increased critical care EEG and ambulatory EEG utilization. Guidelines that marshal responsible use of still-limited resources and changes in broadband and billing practices have also shaped the tele-EEG landscape. It is helpful to characterize the drivers of tele-EEG to navigate barriers to sustainable growth and to build dynamic systems that anticipate challenges in any of the domains that expand access and enhance quality of these diagnostic services. We explore the historical factors and current trends in tele-EEG in the United States in this review.



Publikationsverlauf

Artikel online veröffentlicht:
16. Mai 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hirsch LJ. Continuous EEG monitoring in the intensive care unit: an overview. J Clin Neurophysiol 2004; 21 (05) 332-340
  • 2 Faulkner HJ, Arima H, Mohamed A. The utility of prolonged outpatient ambulatory EEG. Seizure 2012; 21 (07) 491-495
  • 3 Rosenthal ES. The utility of EEG, SSEP, and other neurophysiologic tools to guide neurocritical care. Neurotherapeutics 2012; 9 (01) 24-36
  • 4 Munjal NK, Bergman I, Scheuer ML, Genovese CR, Simon DW, Patterson CM. Quantitative electroencephalography (EEG) predicting acute neurologic deterioration in the pediatric intensive care unit: a case series. J Child Neurol 2022; 37 (01) 73-79
  • 5 Young GB. Continuous EEG monitoring in the ICU: challenges and opportunities. Can J Neurol Sci 2009; 36 (Suppl. 02) S89-S91
  • 6 Sanchez SM, Carpenter J, Chapman KE. et al; Pediatric Critical Care EEG Group. Pediatric ICU EEG monitoring: current resources and practice in the United States and Canada. J Clin Neurophysiol 2013; 30 (02) 156-160
  • 7 Mizrahi EM. Electroencephalographic-video monitoring in neonates, infants, and children. J Child Neurol 1994; 9 (Suppl. 01) S46-S56
  • 8 Amerineni R, Sun H, Lee H. et al. Using electronic health data to explore effectiveness of ICU EEG and anti-seizure treatment. Ann Clin Transl Neurol 2021; 8 (12) 2270-2279
  • 9 Rosenthal ES. Seizures, status epilepticus, and continuous EEG in the intensive care unit. Continuum (Minneap Minn) 2021; 27 (05) 1321-1343
  • 10 Beuchat I, Rossetti AO, Novy J, Schindler K, Ruüegg S, Alvarez V. Continuous versus routine standardized electroencephalogram for outcome prediction in critically ill adults: analysis from a randomized trial. Crit Care Med 2021; DOI: 10.1097/CCM.0000000000005311.
  • 11 Gollwitzer S, Müller TM, Hopfengärtner R. et al. Quantitative EEG after subarachnoid hemorrhage predicts long-term functional outcome. J Clin Neurophysiol 2019; 36 (01) 25-31
  • 12 Hill CE, Blank LJ, Thibault D. et al. Continuous EEG is associated with favorable hospitalization outcomes for critically ill patients. Neurology 2019; 92 (01) e9-e18
  • 13 Ghossein J, Alnaji F, Webster RJ, Bulusu S, Pohl D. Continuous EEG in a pediatric intensive care unit: adherence to monitoring criteria and barriers to adequate implementation. Neurocrit Care 2021; 34 (02) 519-528
  • 14 Tenney JR, Gloss D, Arya R. et al. Practice guideline: use of quantitative EEG for the diagnosis of mild traumatic brain injury: report of the Guideline Committee of the American Clinical Neurophysiology Society. J Clin Neurophysiol 2021; 38 (04) 287-292
  • 15 Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N, Oddo M. Neurointensive Care Section of the European Society of Intensive Care Medicine. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med 2013; 39 (08) 1337-1351
  • 16 Shellhaas RA, Chang T, Tsuchida T. et al. The American Clinical Neurophysiology Society's guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol 2011; 28 (06) 611-617
  • 17 Herman ST, Abend NS, Bleck TP. et al; Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol 2015; 32 (02) 87-95
  • 18 Herman ST, Abend NS, Bleck TP. et al; Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society. Consensus statement on continuous EEG in critically ill adults and children, part II: personnel, technical specifications, and clinical practice. J Clin Neurophysiol 2015; 32 (02) 96-108
  • 19 Le Roux P, Menon DK, Citerio G. et al. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care 2014; 21 (Suppl. 02) S282-S296
  • 20 American Clinical Neurophysiology Society. Guideline twelve: guidelines for long-term monitoring for epilepsy. Am J Electroneurodiagn Technol 2008; 48 (04) 265-286
  • 21 Hinrichs H, Scholz M, Baum AK, Kam JWY, Knight RT, Heinze H-J. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci Rep 2020; 10 (01) 5218
  • 22 Doerrfuss JI, Kilic T, Ahmadi M, Weber JE, Holtkamp M. Predictive value of acute EEG measurements for seizures and epilepsy after stroke using a dry cap electrode EEG system - study design and proof of concept. Epilepsy Behav 2020; 104 (Pt B): 106486
  • 23 Lin B-S, Huang Y-K, Lin B-S. Design of smart EEG cap. Comput Methods Programs Biomed 2019; 178: 41-46
  • 24 McKay JH, Feyissa AM, Sener U. et al. Time is brain: the use of EEG electrode caps to rapidly diagnose nonconvulsive status epilepticus. J Clin Neurophysiol 2019; 36 (06) 460-466
  • 25 Ochoa JG, Rini J, Diaz J, Botwell J. Technical description of long-term high-density EEG monitoring using 128-channel cap applied with a conductive paste. J Clin Neurophysiol 2019; 36 (03) 175-180
  • 26 Fiedler P, Fonseca C, Supriyanto E, Zanow F, Haueisen J. A high-density 256-channel cap for dry electroencephalography. Hum Brain Mapp 2021; DOI: 10.1002/hbm.25721.
  • 27 Vespa PM, Olson DM, John S. et al. Evaluating the clinical impact of rapid response electroencephalography: the DECIDE multicenter prospective observational clinical study. Crit Care Med 2020; 48 (09) 1249-1257
  • 28 LaMonte MP. Ceribell EEG shortens seizure diagnosis and workforce time and is useful for COVID isolation. Epilepsia Open 2021; 6 (02) 331-338
  • 29 Kyriakopoulos P, Ding JZ, Niznick N. et al. Resident use of EEG cap system to rule out nonconvulsive status epilepticus. J Clin Neurophysiol 2021; 38 (05) 426-431
  • 30 Ziai WC, Schlattman D, Llinas R. et al. Emergent EEG in the emergency department in patients with altered mental states. Clin Neurophysiol 2012; 123 (05) 910-917
  • 31 Lambert L, Hachicha K, Ahmed SZ, Pinna A, Garda P. Synchronizing physiological data and video in a telemedicine application: a multimedia approach. Annu Int Conf IEEE Eng Med Biol Soc 2015; 2015: 181-185
  • 32 Gumnit RJ, Labiner DM, Fountain NB. Data on specialized epilepsy centers: report to the Institute of Medicine's Committee on the Public Health Dimensions of the Epilepsies. In: England MJ, Liverman CT, Schultz AM. eds. Institute of Medicine (US) Committee on the Public Health Dimensions of the Epilepsies. Washington (DC): National Academies Press (US); 2012
  • 33 Editorial: building a qualified neurodiagnostic technology workforce. Neurodiagn J 2016; 56 (03) 131-138
  • 34 Neurology Insights. The looming shortage of neurodiagnostic technologists - neurology insights [Internet]. [cited 2021 Nov 30]. Accessed January 2, 2022 at: https://www.neurologyinsights.com/2020/01/10/the-looming-shortage-of-neurodiagnostic-technicians-technologists/
  • 35 ASET. Cited 2021 Nov 30. Accessed January 2, 2022 at: https://www.aset.org/files/public/Deans_Letter_AAS.pdf
  • 36 Gavvala J, Abend N, LaRoche S. et al; Critical Care EEG Monitoring Research Consortium (CCEMRC). Continuous EEG monitoring: a survey of neurophysiologists and neurointensivists. Epilepsia 2014; 55 (11) 1864-1871
  • 37 Kang JH, Sherill GC, Sinha SR, Swisher CB. A trial of real-time electrographic seizure detection by neuro-ICU nurses using a panel of quantitative EEG trends. Neurocrit Care 2019; 31 (02) 312-320
  • 38 Riviello Jr JJ, Erklauer J. Neurocritical care and brain monitoring. Neurol Clin 2021; 39 (03) 847-866
  • 39 Baang HY, Chen HY, Herman AL. et al. The utility of quantitative EEG in detecting delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Clin Neurophysiol 2021; DOI: 10.1097/WNP.0000000000000754.
  • 40 Mueller TM, Gollwitzer S, Hopfengärtner R. et al. Alpha power decrease in quantitative EEG detects development of cerebral infarction after subarachnoid hemorrhage early. Clin Neurophysiol 2021; 132 (06) 1283-1289
  • 41 Pugin D, Vulliemoz S, Bijlenga P, Gasche Y. Continuous EEG monitoring for aneurysmal subarachnoid hemorrhage [in French]. Rev Med Suisse 2014; 10 (454) 2356 , 2358–2361
  • 42 Hong J-H, Bang JS, Chung J-H, Han M-K. Protocol based real-time continuous electroencephalography for detecting vasospasm in subarachnoid hemorrhage. J Korean Neurosurg Soc 2016; 59 (02) 154-157
  • 43 Vespa PM, Nuwer MR, Juhász C. et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol 1997; 103 (06) 607-615
  • 44 Sansevere AJ, DiBacco ML, Pearl PL, Rotenberg A. Quantitative electroencephalography for early detection of elevated intracranial pressure in critically ill children: case series and proposed protocol. J Child Neurol 2022; 37 (01) 5-11
  • 45 Sheikh ZB, Maciel CB, Dhakar MB, Hirsch LJ, Gilmore EJ. Nonepileptic electroencephalographic correlates of episodic increases in intracranial pressure. J Clin Neurophysiol 2020; DOI: 10.1097/WNP.0000000000000750.
  • 46 Sanz-García A, Pérez-Romero M, Pastor J. et al. Identifying causal relationships between EEG activity and intracranial pressure changes in neurocritical care patients. J Neural Eng 2018; 15 (06) 066029
  • 47 Tabaeizadeh M, Aboul Nour H, Shoukat M. et al. Burden of epileptiform activity predicts discharge neurologic outcomes in severe acute ischemic stroke. Neurocrit Care 2020; 32 (03) 697-706
  • 48 Zafar SF, Rosenthal ES, Jing J. et al. Automated annotation of epileptiform burden and its association with outcomes. Ann Neurol 2021; 90 (02) 300-311
  • 49 Lalgudi Ganesan S, Hahn CD. Electrographic seizure burden and outcomes following pediatric status epilepticus. Epilepsy Behav 2019; 101 (Pt B): 106409
  • 50 Pinchefsky EF, Hahn CD. Outcomes following electrographic seizures and electrographic status epilepticus in the pediatric and neonatal ICUs. Curr Opin Neurol 2017; 30 (02) 156-164
  • 51 Halpern NA, Goldman DA, Tan KS, Pastores SM. Trends in critical care beds and use among population groups and medicare and medicaid beneficiaries in the United States: 2000-2010. Crit Care Med 2016; 44 (08) 1490-1499
  • 52 Lopez AM, Lam K, Thota R. Barriers and facilitators to telemedicine: can you hear me now?. Am Soc Clin Oncol Educ Book 2021; 41: 25-36
  • 53 Uscher-Pines L, Thompson J, Taylor P. et al. Where virtual care was already a reality: experiences of a nationwide telehealth service provider during the COVID-19 Pandemic. J Med Internet Res 2020; 22 (12) e22727
  • 54 Freeman WD, Barrett KM, Vatz KA, Demaerschalk BM. Future neurohospitalist: teleneurohospitalist. Neurohospitalist 2012; 2 (04) 132-143
  • 55 Interstate Medical Licensure Compact [Internet]. Physician License [cited 2021 Dec 1]. Accessed January 2, 2022 at: https://www.imlcc.org/
  • 56 Nesbitt TS. The Evolution of Telehealth: Where Have We Been and Where Are We Going? The Role of Telehealth in an Evolving Health Care Environment: Workshop Summary. Washington, DC: National Academies Press (US); 2012
  • 57 Lin L, Al-Faraj A, Ayub N. et al. Electroencephalographic abnormalities are common in COVID-19 and are associated with outcomes. Ann Neurol 2021; 89 (05) 872-883
  • 58 Zepeda R, Lee Y, Agostini M. et al. Emergent admissions to the epilepsy monitoring unit in the setting of COVID-19 pandemic-related, state-mandated restrictions: clinical decision making and outcomes. Neurodiagn J 2021; 61 (02) 95-103
  • 59 Kubota Y, Nakamoto H, Kawamata T. Nonconvulsive status epilepticus in the neurosurgical setting. Neurol Med Chir (Tokyo) 2016; 56 (10) 626-631
  • 60 Billakota S, Sinha SR. Utility of continuous EEG monitoring in noncritically lll hospitalized patients. J Clin Neurophysiol 2016; 33 (05) 421-425
  • 61 Kubota Y, Nakamoto H, Egawa S, Kawamata T. Continuous EEG monitoring in ICU. J Intensive Care 2018; 6: 39
  • 62 Struck AF, Osman G, Rampal N. et al. Time-dependent risk of seizures in critically ill patients on continuous electroencephalogram. Ann Neurol 2017; 82 (02) 177-185
  • 63 Westover MB, Shafi MM, Bianchi MT. et al. The probability of seizures during EEG monitoring in critically ill adults. Clin Neurophysiol 2015; 126 (03) 463-471
  • 64 Ney JP, van der Goes DN, Nuwer MR, Nelson L, Eccher MA. Continuous and routine EEG in intensive care: utilization and outcomes, United States 2005-2009. Neurology 2013; 81 (23) 2002-2008
  • 65 Singh J, Thakur G, Alexander J. et al. Predictors of nonconvulsive seizure and their effect on short-term outcome. J Clin Neurophysiol 2021; 38 (03) 221-225
  • 66 Kolls BJ, Mace BE, Dombrowski KE. Implementation of continuous video-electroencephalography at a community hospital enhances care and reduces costs. Neurocrit Care 2018; 28 (02) 229-238
  • 67 Tatum WO, Desai N, Feyissa A. Ambulatory EEG: crossing the divide during a pandemic. Epilepsy Behav Rep 2021; 16: 100500
  • 68 Beniczky S, Husain A, Ikeda A. et al. Importance of access to epilepsy monitoring units during the COVID-19 pandemic: consensus statement of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology. Epileptic Disord 2021; 23 (04) 533-536
  • 69 Davis LE, Harnar J, LaChey-Barbee LA, Pirio Richardson S, Fraser A, King MK. Using teleneurology to deliver chronic neurologic care to rural veterans: analysis of the first 1,100 patient visits. Telemed J E Health 2019; 25 (04) 274-278
  • 70 Velasquez SE, Chaves-Carballo E, Nelson E-L. Pediatric teleneurology: a model of epilepsy care for rural populations. Pediatr Neurol 2016; 64: 32-37
  • 71 Almallouhi E, Al Kasab S, Harvey JB. et al. Teleneurology network to improve access to neurologists for patients in rural areas: a real-world experience. Telemed J E Health 2020; 26 (01) 110-113
  • 72 Wechsler LR. Advantages and limitations of teleneurology. JAMA Neurol 2015; 72 (03) 349-354
  • 73 Der-Martirosian C, Wyte-Lake T, Balut M. et al. Implementation of telehealth services at the US Department of Veterans Affairs During the COVID-19 pandemic: mixed methods study. JMIR Form Res 2021; 5 (09) e29429
  • 74 Zhuo Ding J, Mallick R, Carpentier J. et al. Resident training and interrater agreements using the ACNS critical care EEG terminology. Seizure 2019; 66: 76-80
  • 75 Scarpino M, Lolli F, Hakiki B. et al; Intensive Rehabilitation Unit Study Group of the IRCCS Don Gnocchi Foundation, Italy. Prognostic value of post-acute EEG in severe disorders of consciousness, using American Clinical Neurophysiology Society terminology. Neurophysiol Clin 2019; 49 (04) 317-327
  • 76 Gaspard N. ACNS critical care EEG terminology: value, limitations, and perspectives. J Clin Neurophysiol 2015; 32 (06) 452-455
  • 77 Kumar G, Falk DM, Bonello RS, Kahn JM, Perencevich E, Cram P. The costs of critical care telemedicine programs: a systematic review and analysis. Chest 2013; 143 (01) 19-29
  • 78 Rogove HJ, McArthur D, Demaerschalk BM, Vespa PM. Barriers to telemedicine: survey of current users in acute care units. Telemed J E Health 2012; 18 (01) 48-53
  • 79 Rossetti AO, Schindler K, Sutter R. et al. Continuous vs routine electroencephalogram in critically ill adults with altered consciousness and no recent seizure: a multicenter randomized clinical trial. JAMA Neurol 2020; 77 (10) 1225-1232
  • 80 Cheng JY. Latency to treatment of status epilepticus is associated with mortality and functional status. J Neurol Sci 2016; 370: 290-295
  • 81 Banoczi W. ICU-cEEG monitoring. Neurodiagn J 2020; 60 (04) 231-271
  • 82 Kamousi B, Karunakaran S, Gururangan K. et al. Monitoring the burden of seizures and highly epileptiform patterns in critical care with a novel machine learning method. Neurocrit Care 2021; 34 (03) 908-917
  • 83 Jing J, Sun H, Kim JA. et al. Development of expert-level automated detection of epileptiform discharges during electroencephalogram interpretation. JAMA Neurol 2020; 77 (01) 103-108