Rofo 2016; 188(06): 539-550
DOI: 10.1055/s-0042-100477
Review
© Georg Thieme Verlag KG Stuttgart · New York

Thermoablation of Bone Tumors

Thermoablation von Knochentumoren
K. I. Ringe
1   Department of Diagnostic and Interventional Radiology, Medizinische Hochschule Hannover, Germany
,
M. Panzica
2   Department of Trauma Surgery, Medizinische Hochschule Hannover, Germany
,
C. von Falck
1   Department of Diagnostic and Interventional Radiology, Medizinische Hochschule Hannover, Germany
› Author Affiliations
Further Information

Publication History

15 October 2015

26 December 2015

Publication Date:
16 March 2016 (online)

Abstract

The aim of this article is to review the significance of percutaneous thermal ablation in the treatment of bone tumors. We describe available ablation techniques as well as advantages and disadvantages in specific settings. In detail, radiofrequency ablation (RFA), microwave ablation (MWA), laser ablation, high intensity focused ultrasound (HIFU) and cryoablation are presented. In the second part of this review curative and palliative indications for the treatment of benign and malignant bone tumors are discussed. This includes especially RFA, laser or cryoablation for the treatment of osteoid osteoma, as well as the palliative treatment of painful bone metastases, for example, by means of MWA or MR-guided HIFU.

Key Points:

• The various thermoablative techniques demonstrate specific advantages and disadvantages.

• Radiofrequency ablation is the evidence-based method of choice for treating osteoid osteoma.

• Laser ablation is primarily suited for the treatment of small lesions of the hands and feet.

• The intrinsically analgesic effect of cryoablation is advantageous when treating painful lesions.

• Palliative treatment of painful bone metastases can for example be performed using MWA or MR-guided HIFU, by itself or combined with cementoplasty.

Citation Format:

• Ringe KI, Panzica M, von Falck C. Thermoablation of Bone Tumors. Fortschr Röntgenstr 2016; 188: 539 – 550

Zusammenfassung

In der vorliegenden Übersichtsarbeit wird der Stellenwert der perkutanen Thermoablation bei der Behandlung von Knochentumoren dargelegt. Zunächst werden technische Grundlagen der unterschiedlichen Verfahren beschrieben, sowie Vor- und Nachteile der einzelnen Methoden aufgezeigt. Im Detail wird dabei auf die Radiofrequenzablation (RFA), die Mikrowellenablation (MWA), die Laserablation, den hochintensiven fokussierten Ultraschall (HIFU) sowie die Kryoablation eingegangen. Im zweiten Abschnitt werden kurative und palliative Indikationen zur Behandlung benigner und maligner Knochenläsionen diskutiert. Hierzu zählen insbesondere die RFA, Laser- oder Kryoablation zur Behandlung des Osteoidosteoms, sowie die palliative Behandlung schmerzhafter Knochenmetastasen beispielsweise mittels MWA oder MR-gesteuertem HIFU.

Deutscher Artikel/German Article

 
  • References

  • 1 Ahmed M, Solbiati L, Brace CL et al. Image-guided tumor ablation: standardization of terminology and reporting criteria – a 10-year update. Radiology 2014; 273: 241-260
  • 2 Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol 2000; 174: 323-331
  • 3 Hong K, Georgiades CS. Radiofrequency Ablation: Mechanism of Action and Devices. In: Hong K, Georgiades CS, (eds) Percutaneous Tumor Ablation. edn. New York: Thieme; 2011: 1-14
  • 4 Brace CL, Laeseke PF, Sampson LA et al. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model. Radiology 2007; 244: 151-156
  • 5 Wright AS, Sampson LA, Warner TF et al. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology 2005; 236: 132-139
  • 6 Ringe KI, Lutat C, Rieder C et al. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation. PloS one 2015; 10: e0134301
  • 7 Skonieczki BD, Wells C, Wasser EJ et al. Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: is it safe?. Eur J Radiol 2011; 79: 343-346
  • 8 Vogl TJ, Mack M, Straub R et al. Percutaneous interstitial thermotherapy of malignant liver tumors. Fortschr Röntgenstr 2000; 172: 12-22
  • 9 Garnon J, Tsoumakidou G, Enescu J et al. Overview of thermal ablation devices: HIFU, laser interstitial, chemical ablation. In: Clark T, Sabhawal T, (eds) Interventional Radiology Techniques in Ablation. London: Springer; 2013: 29-37
  • 10 Avedian RS, Gold G, Ghanouni P et al. Magnetic resonance guided high-intensity focused ultrasound ablation of musculoskeletal tumors. Curr Orthop Pract 2011; 22: 303-308
  • 11 Catane R, Beck A, Inbar Y et al. MR-guided focused ultrasound surgery (MRgFUS) for the palliation of pain in patients with bone metastases – preliminary clinical experience. Ann Oncol 2007; 18: 163-167
  • 12 Jenne JW, Preusser T, Gunther M. High-intensity focused ultrasound: principles, therapy guidance, simulations and applications. ZMed Phys 2012; 22: 311-322
  • 13 Kim C, O'Rourke AP, Mahvi DM et al. Finite-element analysis of ex vivo and in vivo hepatic cryoablation. IEEE Trans Biomed Eng 2007; 54: 1177-1185
  • 14 Georgiades CS, Marx JK. Cryoablation: Mechanism of Action and Devices. In: Hong K, Georgiades CS, (eds) Percutaneous Tumor Ablation. New York: Thieme; 2011: 15-26
  • 15 Isfort P, Penzkofer T, Mahnken AH. Cryoablation – back again?. Radiologe 2012; 52: 29-37
  • 16 Callstrom MR, Kurup AN. Percutaneous ablation for bone and soft tissue metastases--why cryoablation?. Skelet Radiol 2009; 38: 835-839
  • 17 Motamedi D, Learch TJ, Ishimitsu DN et al. Thermal ablation of osteoid osteoma: overview and step-by-step guide. Radiographics 2009; 29: 2127-2141
  • 18 Greco F, Tamburrelli F, Ciabattoni G. Prostaglandins in osteoid osteoma. Int Orthop 1991; 15: 35-37
  • 19 Cantwell CP, Obyrne J, Eustace S. Current trends in treatment of osteoid osteoma with an emphasis on radiofrequency ablation. Eur Radiol 2004; 14: 607-617
  • 20 Sluga M, Windhager R, Pfeiffer M et al. Peripheral osteoid osteoma. Is there still a place for traditional surgery?. J Bone Joint Surg Br 2002; 84: 249-251
  • 21 Parlier-Cuau C, Champsaur P, Nizard R et al. Percutaneous removal of osteoid osteoma. Radiol Clin North Am 1998; 36: 559-566
  • 22 Vanderschueren GM, Taminiau AH, Obermann WR et al. Osteoid osteoma: clinical results with thermocoagulation. Radiology 2002; 224: 82-86
  • 23 Rosenthal DI, Springfield DS, Gebhardt MC et al. Osteoid osteoma: percutaneous radio-frequency ablation. Radiology 1995; 197: 451-454
  • 24 Rybak LD, Gangi A, Buy X et al. Thermal ablation of spinal osteoid osteomas close to neural elements: technical considerations. Am J Roentgenol 2010; 195: W293-W298
  • 25 Rosenthal DI, Alexander A, Rosenberg AE et al. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology 1992; 183: 29-33
  • 26 Bruners P, Penzkofer T, Gunther RW et al. Percutaneous radiofrequency ablation of osteoid osteomas: technique and results. Fortschr Röntgenstr 2009; 181: 740-747
  • 27 Gangi A, Alizadeh H, Wong L et al. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 2007; 242: 293-301
  • 28 Basile A, Failla G, Reforgiato A et al. The use of microwaves ablation in the treatment of epiphyseal osteoid osteomas. Cardiovasc Intervent Radiol 2014; 37: 737-742
  • 29 Kostrzewa M, Diezler P, Michaely H et al. Microwave ablation of osteoid osteomas using dynamic MR imaging for early treatment assessment: preliminary experience. J Vasc Intervent Radiol 2014; 25: 106-111
  • 30 Geiger D, Napoli A, Conchiglia A et al. MR-guided focused ultrasound (MRgFUS) ablation for the treatment of nonspinal osteoid osteoma: a prospective multicenter evaluation. J Bone Joint Surg Am 2014; 96: 743-751
  • 31 Coupal TM, Mallinson PI, Munk PL et al. CT-guided percutaneous cryoablation for osteoid osteoma: initial experience in adults. Am J Roentgenol 2014; 202: 1136-1139
  • 32 Weber MA, Sprengel SD, Omlor GW et al. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skelet Radiol 2015; 44: 981-993
  • 33 Erickson JK, Rosenthal DI, Zaleske DJ et al. Primary treatment of chondroblastoma with percutaneous radio-frequency heat ablation: report of three cases. Radiology 2001; 221: 463-468
  • 34 Corby RR, Stacy GS, Peabody TD et al. Radiofrequency ablation of solitary eosinophilic granuloma of bone. Am J Roentgenol 2008; 190: 1492-1494
  • 35 Kujak JL, Liu PT, Johnson GB et al. Early experience with percutaneous cryoablation of extra-abdominal desmoid tumors. Skeletal Radiol 2010; 39: 175-182
  • 36 Ringe KI, Rosenthal H, Langer F et al. Radiofrequency ablation of a rare case of an intraosseous hibernoma causing therapy-refractory pain. J Vasc Intervent Radiol 2013; 24: 1754-1756
  • 37 Janjan NA, Payne R, Gillis T et al. Presenting symptoms in patients referred to a multidisciplinary clinic for bone metastases. J Pain Symptom Manage 1998; 16: 171-178
  • 38 Lin A, Ray ME. Targeted and systemic radiotherapy in the treatment of bone metastasis. Cancer Metastasis Rev 2006; 25: 669-675
  • 39 Manabe J, Kawaguchi N, Matsumoto S et al. Surgical treatment of bone metastasis: indications and outcomes. Int J Clin Oncol 2005; 10: 103-111
  • 40 Thanos L, Mylona S, Galani P et al. Radiofrequency ablation of osseous metastases for the palliation of pain. Skelet Radiol 2008; 37: 189-194
  • 41 Brown DB. Musculoskeletal Ablation. In: Hong K, Georgiades C, (eds) Percutaneous Tumor Ablation. New York: Thieme; 2011: 137-152
  • 42 Callstrom MR, Atwell TD, Charboneau JW et al. Painful metastases involving bone: percutaneous image-guided cryoablation – prospective trial interim analysis. Radiology 2006; 241: 572-580
  • 43 Breckheimer A, Bruners P, Mahnken A. Interventional management of a rare complication in radiofrequency ablation of an osteosclerotic bone metastasis. Fortschr Röntgenst 2010; 182: 433-435
  • 44 Thacker PG, Callstrom MR, Curry TB et al. Palliation of painful metastatic disease involving bone with imaging-guided treatment: comparison of patients' immediate response to radiofrequency ablation and cryoablation. Am J Roentgenol 2011; 197: 510-515
  • 45 Masala S, Guglielmi G, Petrella MC et al. Percutaneous ablative treatment of metastatic bone tumours: visual analogue scale scores in a short-term series. Singapore Med J 2011; 52: 182-189
  • 46 Andreula C, Muto M, Leonardi M. Interventional spinal procedures. Eur J Radiol 2004; 50: 112-119
  • 47 Masala S, Chiocchi M, Taglieri A et al. Combined use of percutaneous cryoablation and vertebroplasty with 3D rotational angiograph in treatment of single vertebral metastasis: comparison with vertebroplasty. Neuroradiology 2013; 55: 193-200
  • 48 Yamakado K, Matsumine A, Nakamura T et al. Radiofrequency ablation for the treatment of recurrent bone and soft-tissue sarcomas in non-surgical candidates. Int J Clin Oncol 2014; 19: 955-962
  • 49 Chen W, Zhu H, Zhang L et al. Primary bone malignancy: effective treatment with high-intensity focused ultrasound ablation. Radiology 2010; 255: 967-978
  • 50 Rybak LD, Rosenthal DI, Wittig JC. Chondroblastoma: radiofrequency ablation--alternative to surgical resection in selected cases. Radiology 2009; 251: 599-604
  • 51 Liu DM, Kee ST, Loh CT et al. Cryoablation of osteoid osteoma: two case reports. J Vasc Intervent Radiol 2010; 21: 586-589
  • 52 Wu B, Xiao YY, Zhang X et al. CT-guided percutaneous cryoablation of osteoid osteoma in children: an initial study. Skelet Radiol 2011; 40: 1303-1310
  • 53 Zouari L, Bousson V, Hamze B et al. CT-guided percutaneous laser photocoagulation of osteoid osteomas of the hands and feet. Eur Radiol 2008; 18: 2635-2641
  • 54 Roqueplan F, Porcher R, Hamze B et al. Long-term results of percutaneous resection and interstitial laser ablation of osteoid osteomas. Eur Radiol 2010; 20: 209-217
  • 55 Etienne A, Waynberger E, Druon J. Interstitial laser photocoagulation for the treatment of osteoid osteoma: retrospective study on 35 cases. Diagn Interv Imaging 2013; 94: 300-310
  • 56 Aschero A, Gorincour G, Glard Y et al. Percutaneous treatment of osteoid osteoma by laser thermocoagulation under computed tomography guidance in pediatric patients. Eur Radiol 2009; 19: 679-686
  • 57 Napoli A, Anzidei M, Ciolina F et al. MR-guided high-intensity focused ultrasound: current status of an emerging technology. Cardiovasc Intervent Radiol 2013; 36: 1190-1203
  • 58 Rimondi E, Mavrogenis AF, Rossi G et al. Radiofrequency ablation for non-spinal osteoid osteomas in 557 patients. Eur Radiol 2012; 22: 181-188
  • 59 Rosenthal DI, Hornicek FJ, Torriani M et al. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 2003; 229: 171-175
  • 60 Bourgault C, Vervoort T, Szymanski C et al. Percutaneous CT-guided radiofrequency thermocoagulation in the treatment of osteoid osteoma: a 87 patient series. Orthop Ttraumatol Surg Res 2014; 100: 323-327
  • 61 Callstrom MR, Dupuy DE, Solomon SB et al. Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer 2013; 119: 1033-1041
  • 62 Deschamps F, Farouil G, Ternes N et al. Thermal ablation techniques: a curative treatment of bone metastases in selected patients?. Eur Radiol 2014; 24: 1971-1980
  • 63 Liberman B, Gianfelice D, Inbar Y et al. Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study. Ann Surg Oncol 2009; 16: 140-146
  • 64 Hurwitz MD, Ghanouni P, Kanaev SV et al. Magnetic resonance-guided focused ultrasound for patients with painful bone metastases: phase III trial results. J Natl Cancer Inst 2014; 106
  • 65 Kastler A, Alnassan H, Pereira PL et al. Analgesic effects of microwave ablation of bone and soft tissue tumors under local anesthesia. Pain Med 2013; 14: 1873-1881
  • 66 Wei Z, Zhang K, Ye X et al. Computed tomography-guided percutaneous microwave ablation combined with osteoplasty for palliative treatment of painful extraspinal bone metastases from lung cancer. Skelet Radiol 2015; 44: 1485-1490
  • 67 Pusceddu C, Sotgia B, Fele RM et al. Combined Microwave Ablation and Cementoplasty in Patients with Painful Bone Metastases at High Risk of Fracture. Cardiovasc Intervent Radiol 2015; Jun 13 [epub ahead of print]
  • 68 Goetz MP, Callstrom MR, Charboneau JW et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol 2004; 22: 300-306
  • 69 Dupuy DE, Liu D, Hartfeil D et al. Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer 2010; 116: 989-997