ZWR - Das Deutsche Zahnärzteblatt, Table of Contents ZWR - Das Deutsche Zahnärzteblatt 2016; 125(03): 2-7DOI: 10.1055/s-0042-102608 Fortbildung – Dentalmaterialien-Spezial © Georg Thieme Verlag KG Stuttgart · New YorkUpdate Materialforschung – direkte kunststoffbasierte Komposite Authors Author Affiliations N. Ilie 1 München/Regensburg/Erlangen M. Rosentritt 1 München/Regensburg/Erlangen U. Lohbauer 1 München/Regensburg/Erlangen Recommend Article Abstract Buy Article(opens in new window) Direkte kunststoffbasierte Komposite haben in den letzten Jahren erhebliche Verbesserungen hinsichtlich ihrer physikalischen Eigenschaften, Applikationstechniken und Ästhetik erfahren. Die Miniaturisierung der Füllkörper, die Änderungen der chemischen Zusammensetzung der Polymermatrix für eine reduzierte Schrumpfung sowie die zeitsparende und einfachere Applikation von Kompositen im Bulk standen im Fokus der Materialforschung. Der folgende Beitrag gibt einen Überblick über das klinische Verhalten, die chemische Zusammensetzung und die Eigenschaften verschiedener Kompositklassen. Full Text References Literatur 1 van Dijken JW. A clinical evaluation of anterior conventional, microfiller, and hybrid composite resin fillings. A 6-year follow-up study. Acta odontologica Scandinavica 1986; 44: 357-367 2 Opdam NJ et al. 12-year survival of composite vs. amalgam restorations. Journal of dental research 2010; 89: 1063-1067 3 Ferracane JL. Resin-based composite performance: are there some things we can’t predict?. Dent mater 2013; 29: 51-58 4 Da Rosa Rodolpho PA Donassollo TA, Cenci MS et al. 22-Year clinical evaluation of the performance of two posterior composites with different filler characteristics. Dent mater 2011; 27: 955-963 5 Pallesen U, van Dijken JW. A randomized controlled 30 years follow up of three conventional resin composites in Class II restorations. Dent mater 2015; 31: 1232-1244 6 Opdam NJ van de Sande FH, Bronkhorst E et al. Longevity of posterior composite restorations: a systematic review and meta-analysis. Journal of dental research 2014; 93: 943-949 7 Demarco FF Corrêa MB, Cenci MS et al. Longevity of posterior composite restorations: not only a matter of materials. Dent mater 2012; 28: 87-101 8 Heintze SD Rousson V, Hickel R . Clinical effectiveness of direct anterior restorations – A meta - analysis. Dent mater 2015; 31: 481-495 9 Rosentritt M Buczovsky S, Behr M et al. Laboratory tests for assessing adaptability and stickiness of dental composites. Dent Mater 2014; 30: 963-967 10 Lohbauer U Belli R, Ferracane JL . Factors Involved in Mechanical Fatigue Degradation of Dental Resin Composites. J Dent Res 2013; 92: 584-591 11 Ferracane JL. Resin composite – state of the art. Dent mater 2011; 27: 29-38 12 Kim JW Kim LU, Kim CK . Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules 2007; 8: 215-222 13 Cramer NB Stansbury JW, Bowman CN . Recent advances and developments in composite dental restorative materials. Journal of dental research 2011; 90: 402-416 14 Ilie N, Hickel R. Investigations on mechanical behaviour of dental composites. Clinical oral investigations 2009; 13: 427-438 15 Peutzfeldt A. Resin composites in dentistry: the monomer systems. European journal of oral sciences 1997; 105: 97-116 16 Trujillo-Lemon M et al. Dimethacrylate derivates of dimer acid. J Polymer Science 2006; 44: 3921-3929 17 Eick JD Byerley TJ, Chappell RP et al. Properties of expanding SOC/epoxy copolymers for dental use in dental composites. Dent mater 1993; 9: 123-127 18 Weinmann W Thalacker C, Guggenberger R . Siloranes in dental composites. Dent mater 2005; 21: 68-74 19 Ge JH ,Trujillo M, Stansbury J . Synthesis and photopolymerization of low shrinkage methacrylate monomers containing bulky substituent groups. Dent Mater 2005; 21: 1163-1169 20 Khatri CA Stansbury JW, Schultheisz CR et al. Synthesis, characterization and evaluation of urethane derivatives of Bis-GMA. Dent Mater 2003; 19: 584-588 21 Ogliari FA Ely C, Zanchi CH et al. Influence of chain extender length of aromatic dimethacrylates on polymer network development. Dent Mater 2008; 24: 165-171 22 Moszner N Fischer UK, Angermann J et al. A partially aromatic urethane dimethacrylate as a new substitute for Bis-GMA in restorative composites. Dent Mater 2008; 24: 694-699 23 Wolter H et al. New inorganic/organic copolymers (ORMOCERs) for dental application. Mat Res Soc Symp Proc 1994; 346: 143-149 24 Moszner N, Gianasmidis A, Klapdohr S et al. Sol-gel materials 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components. Dent mater 2008; 24: 851-856 25 Sahin G et al. Synthesis and Evaluation of New Dental Monomers with Both Phosphonic and Carboxylic Acid Functional Groups. J Polym Sci Pol Chem 2009; 47: 1953-1965 26 Yagci B et al. Synthesis and photopolymerizations of new crosslinkers for dental applications. Macromol Mater Eng 2006; 291: 336-344 27 Atai M Nekoomanesh M, Hashemi SA et al. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater 2004; 20: 663-668 28 Lopez-Suevos F. Dickens SH. Degree of cure and fracture properties of experimental acid-resin modified composites under wet and dry conditions. Dent Mater 2008; 24: 778-785 29 Moszner N Fischer UK, Angermann J et al. Bis-(acrylamide)s as new cross-linkers for resin-based composite restoratives. Dent Mater 2006; 22: 1157-1162 30 Utterodt A. Dental composites with triyclo[5.2.02.6]decane derivates. In: Heraus Kulzer GmbH 2008