Z Gastroenterol 2016; 54(05): 433-450
DOI: 10.1055/s-0042-103247
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Artefakte in der Sonografie und ihre Bedeutung für die internistische und gastroenterologische Diagnostik – Teil 1: B-Mode-Artefakte

Ultrasound artifacts and their diagnostic significance in internal medicine and gastroenterology – Part 1: B-mode artifacts
J. Tuma*
1   Sonografie-Institut, Uster, Switzerland
,
C. Jenssen*
2   Krankenhaus Märkisch Oderland GmbH, Strausberg, Germany
,
K. Möller
3   SANA-Klinikum Lichtenberg, Berlin, Germany
,
X. W. Cui
4   Caritas-Krankenhaus Bad Mergentheim, Bad Mergentheim, Germany
,
H. Kinkel
5   Krankenhaus Düren GmbH, Düren, Germany
,
S. Uebel
6   Hitachi Medical Systems GmbH, Wiesbaden, Germany
,
C. F. Dietrich
4   Caritas-Krankenhaus Bad Mergentheim, Bad Mergentheim, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

22. September 2015

10. Februar 2016

Publikationsdatum:
12. Mai 2016 (online)

Zusammenfassung

Artefakte (Bildfehler) in der Sonografie sind mit den physikalischen Eigenschaften des Ultraschalls untrennbar verbunden und entstehen durch Interaktion der Ultraschallwellen mit Gewebestrukturen sowie Fremdkörpern während ihrer Ausbreitung im Körper. Sie können einerseits stören und die diagnostische Aussage erschweren, gelegentlich auch Fehldiagnosen begünstigen, andererseits aber auch diagnostisch hilfreich sein. Artefakte werden durch Reflektion, Absorption, Streuung, Brechung und Beugung von Wellen im menschlichen Körper erzeugt und entstehen bei der Ultraschallbildgebung, da die als konstante Größen angenommenen Parameter wie Schallgeschwindigkeit, geradlinige Schallausbreitung, Dämpfung usw. häufig von den tatsächlichen Parametern abweichen. Auch unzureichende Geräteeinstellungen können ursächlich für Artefakte sein. Kenntnisse über die Entstehung, Vermeidung und Interpretation von Artefakten sind elementare Voraussetzung für die korrekte klinische Befundung von Ultraschallbildern. Teil 1 der Übersicht stellt die physikalischen Grundlagen von Artefakten sowie die wichtigsten B-Bild-Artefakte dar. Daraus resultierende Fehlerquellen und diagnostische Interpretationsmöglichkeiten werden dargestellt.

Abstract

Artifacts in ultrasonographic diagnostics are a result of the physical properties of the ultrasound waves and are caused by interaction of the ultrasound waves with biological structures and tissues and with foreign bodies. On the one hand, they may be distracting and may lead to misdiagnosis. On the other hand, they may be diagnostically helpful. Ultrasound imaging suffers from artifacts, because in reality, parameters assumed to be constant values, such as sound speed, sound rectilinear propagation, attenuation, etc., are often different from the actual parameters. Moreover, inadequate device settings may cause artifacts. Profound knowledge of the causes, avoidance, and interpretation of artifacts is a necessary precondition for correct clinical appraisal of ultrasound images. Part 1 of this review comments on the physics of artifacts and describes the most important B-mode artifacts. Pitfalls, as well as diagnostic chances resulting from B-mode artifacts, are discussed.

* Geteilte Erstautorenschaft.


 
  • Literatur

  • 1 Duden online. Bibliographisches Institut GmbH; 2013
  • 2 Dietrich CF, Frey H, Greis C. Grundlagen. In: Dietrich CF. (Herausgeber) Ultrschall-Kurs. Köln: Deutscher Ärzte-Verlag; 2012: 7-50
  • 3 Jenderka K. Technische Grundlagen, in Sonografische Differenzialdiagnose – Krankheiten des Urogenitalsystems. In: Tuma J, Trinkler F, editors Köln: Deutscher Ärzteverlag; 2009: 1-25
  • 4 Prabhu SJ, Kanal K, Bhargava P et al. Ultrasound artifacts: classification, applied physics with illustrations, and imaging appearances. Ultrasound Q 2014; 30: 145-157
  • 5 Hindi A, Peterson C, Barr RG. Artifacts in diagnostic ultrasound. Reports in Medical Imaging 2013; 6: 29-49
  • 6 Bönhof JA. Ultrasound Artifacts – Part 1. Ultraschall in Med 2015; Nov 13, Epub ahead of print
  • 7 Jenssen C, Tuma J, Moeller K et al. Ultrasound artifacts and their diagnostic significance in internal medicine and gastroenterology. Part 2: Dopplerartifacts. Z Gastroenterol 2015; in press
  • 8 Dietrich CF, Ignee A, Greis C et al. Artifacts and pitfalls in contrast-enhanced ultrasound of the liver. Ultraschall in Med 2014; 35: 108-125
  • 9 Dietrich CF, Ignee A, Hocke M et al. Pitfalls and artefacts using contrast enhanced ultrasound. Z Gastroenterol 2011; 49: 350-356
  • 10 Taljanovic MS, Melville DM, Scalcione LR et al. Artifacts in musculoskeletal ultrasonography. Semin Musculoskelet Radiol 2014; 18: 3-11
  • 11 Balint PV, Mandl P, Kane D. "All that glistens is not gold" – separating artefacts from true Doppler signals in rheumatological ultrasound. Ann Rheum Dis 2008; 67: 141-142
  • 12 Torp-Pedersen ST, Terslev L. Settings and artefacts relevant in colour/power Doppler ultrasound in rheumatology. Ann Rheum Dis 2008; 67: 143-149
  • 13 Sites BD, Brull R, Chan VW et al. Artifacts and pitfall errors associated with ultrasound-guided regional anesthesia. Part I: understanding the basic principles of ultrasound physics and machine operations. Reg Anesth Pain Med 2007; 32: 412-418
  • 14 Zafar HM, Ankola A, Coleman B. Ultrasound pitfalls and artifacts related to six common fetal findings. Ultrasound Q 2012; 28: 105-124
  • 15 Coltrera MD. Ultrasound physics in a nutshell. Otolaryngol Clin North Am 2010; 43: 1149-1159
  • 16 Laing FC, Kurtz AB. The importance of ultrasonic side-lobe artifacts. Radiology 1982; 145: 763-768
  • 17 Goldstein A, Madrazo BL. Slice-thickness artifacts in gray-scale ultrasound. J Clin Ultrasound 1981; 9: 365-375
  • 18 Skolnick ML, Moire HB, Leeky JW. Common artifacts in ultrasound scanning. J Clin Ultrasound 1976; 4: 273-280
  • 19 Naganuma H, Ishida H, Funaoka M et al. Mobile echoes in liver cysts: a form of range-ambiguity artifact. J Clin Ultrasound 2010; 38: 475-479
  • 20 Toyras J, Laasanen MS, Saarakkala S et al. Speed of sound in normal and degenerated bovine articular cartilage. Ultrasound Med Biol 2003; 29: 447-454
  • 21 Olympus websites. 2014 http://www.olympus-ims.com/de/ndt-tutorials/thickness-gage/appendices-velocities
  • 22 Amir S, Chowdhry BS, Hashmani M et al. The analysis of the artifacts due to the simultaneous use of two ultrasound probes with different/similar operating frequencies. Comput Math Methods Med 2013; 2013: 890170
  • 23 Fowler BC, Kolluri R. Frequency interference artifact. Vasc Med 2011; 16: 312-313
  • 24 Jenssen C, Pietsch C, Gottschalk U et al. Abdominal ultrasonography in patients with diabetes mellitus. Part 1: Liver. Z Gastroenterol 2015; 53: 306-319
  • 25 Tuthill TA, Sperry RH, Parker KJ. Deviations from Rayleigh statistics in ultrasonic speckle. Ultrason Imaging 1988; 10: 81-89
  • 26 Toyoda H, Kumada T, Kamiyama N et al. B-mode ultrasound with algorithm based on statistical analysis of signals: evaluation of liver fibrosis in patients with chronic hepatitis C. Am J Roentgenol 2009; 193: 1037-1043
  • 27 Ricci P, Marigliano C, Cantisani V et al. Ultrasound evaluation of liver fibrosis: preliminary experience with acoustic structure quantification (ASQ) software. Radiol Med 2013; 118: 995-1010
  • 28 Kuroda H, Kakisaka K, Kamiyama N et al. Non-invasive determination of hepatic steatosis by acoustic structure quantification from ultrasound echo amplitude. World J Gastroenterol 2012; 18: 3889-3895
  • 29 Yamada H, Ebara M, Yamaguchi T et al. A pilot approach for quantitative assessment of liver fibrosis using ultrasound: preliminary results in 79 cases. J Hepatol 2006; 44: 68-75
  • 30 Kramer C, Jaspers N, Nierhoff D et al. Acoustic structure quantification ultrasound software proves imprecise in assessing liver fibrosis or cirrhosis in parenchymal liver diseases. Ultrasound Med Biol 2014; 40: 2811-2818
  • 31 Karlas T, Berger J, Garnov N et al. Estimating steatosis and fibrosis: Comparison of acoustic structure quantification with established techniques. World J Gastroenterol 2015; 21: 4894-4902
  • 32 Leitman M, Lysyansky P, Sidenko S et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 2004; 17: 1021-1029
  • 33 Modesto KM, Cauduro S, Dispenzieri A et al. Two-dimensional acoustic pattern derived strain parameters closely correlate with one-dimensional tissue Doppler derived strain measurements. Eur J Echocardiogr 2006; 7: 315-321
  • 34 Perk G, Tunick PA, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography--from technical considerations to clinical applications. J Am Soc Echocardiogr 2007; 20: 234-243
  • 35 Bamber J, Cosgrove D, Dietrich CF et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall in Med 2013; 34: 169-184
  • 36 Dietrich CF, Saftoiu A, Jenssen C. Real time elastography endoscopic ultrasound (RTE-EUS), a comprehensive review. Eur J Radiol 2014; 83: 405-414
  • 37 Cui XW, Friedrich-Rust M, De Molo C et al. Liver elastography, comments on EFSUMB elastography guidelines 2013. World J Gastroenterol 2013; 19: 6329-6347
  • 38 Cui XW, Chang JM, Kan QC et al. Endoscopic ultrasound elastography: Current status and future perspectives. World J Gastroenterol 2015; 21: 13212-13224
  • 39 de Lédinghen V, Vergniol J, Foucher J et al. Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography. Liver Int 2012; 32: 911-918
  • 40 de Lédinghen V, Vergniol J, Capdepont M et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol 2014; 60: 1026-1031
  • 41 Myers RP, Pollett A, Kirsch R et al. Controlled Attenuation Parameter (CAP): a noninvasive method for the detection of hepatic steatosis based on transient elastography. Liver Int 2012; 32: 902-910
  • 42 Karlas T, Petroff D, Garnov N et al. Non-invasive assessment of hepatic steatosis in patients with NAFLD using controlled attenuation parameter and 1H-MR spectroscopy. PLoS One 2014; 9: e91987
  • 43 Shi KQ, Tang JZ, Zhu XL et al. Controlled attenuation parameter for the detection of steatosis severity in chronic liver disease: a meta-analysis of diagnostic accuracy. J Gastroenterol Hepatol 2014; 29: 1149-1158
  • 44 Xia MF, Yan HM, He WY et al. Standardized ultrasound hepatic/renal ratio and hepatic attenuation rate to quantify liver fat content: an improvement method. Obesity (Silver Spring) 2012; 20: 444-452
  • 45 von Volkmann HL, Havre RF, Loberg EM et al. Quantitative measurement of ultrasound attenuation and Hepato-Renal Index in Non-Alcoholic Fatty Liver Disease. Med Ultrason 2013; 15: 16-22
  • 46 Hirche TO, Ignee A, Hirche H et al. Evaluation of hepatic steatosis by ultrasound in patients with chronic hepatitis C virus infection. Liver Int 2007; 27: 748-757
  • 47 Webb M, Yeshua H, Zelber-Sagi S et al. Diagnostic value of a computerized hepatorenal index for sonographic quantification of liver steatosis. Am J Roentgenol 2009; 192: 909-914
  • 48 Marshall RH, Eissa M, Bluth EI et al. Hepatorenal index as an accurate, simple, and effective tool in screening for steatosis. Am J Roentgenol 2012; 199: 997-1002
  • 49 Mancini M, Prinster A, Annuzzi G et al. Sonographic hepatic-renal ratio as indicator of hepatic steatosis: comparison with (1)H magnetic resonance spectroscopy. Metabolism 2009; 58: 1724-1730
  • 50 Avruch L, Cooperberg PL. The ring-down artifact. J Ultrasound Med 1985; 4: 21-28
  • 51 Ziskin MC, Thickman DI, Goldenberg NJ et al. The comet tail artifact. J Ultrasound Med 1982; 1: 1-7
  • 52 Shapiro RS, Winsberg F. Comet-tail artifact from cholesterol crystals: observations in the postlithotripsy gallbladder and an in vitro model. Radiology 1990; 177: 153-156
  • 53 Thickman DI, Ziskin MC, Goldenberg NJ et al. Clinical manifestations of the comet tail artifact. J Ultrasound Med 1983; 2: 225-230
  • 54 Lafortune M, Gariepy G, Dumont A et al. The V-shaped artifact of the gallbladder wall. Am J Roentgenol 1986; 147: 505-508
  • 55 Wilson SR, Burns PN, Wilkinson LM et al. Gas at abdominal US: appearance, relevance, and analysis of artifacts. Radiology 1999; 210: 113-123
  • 56 Cui XW, Ignee A, Hocke M et al. Prolonged heterogeneous liver enhancement on contrast-enhanced ultrasound. Ultraschall in Med 2014; 35: 246-252
  • 57 Dietrich CF, Lembcke B, Jenssen C et al. Intestinal Ultrasound in Rare Gastrointestinal Diseases, Update, Part 2. Ultraschall in Med 2015; 36: 428-456
  • 58 Dietrich CF, Lembcke B, Jenssen C et al. Intestinal ultrasound in rare gastrointestinal diseases, update, part 1. Ultraschall in Med 2014; 35: 400-421
  • 59 Dietrich CF, Annema JT, Clementsen P et al. Ultrasound techniques in the evaluation of the mediastinum, part I: endoscopic ultrasound (EUS), endobronchial ultrasound (EBUS) and transcutaneous mediastinal ultrasound (TMUS), introduction into ultrasound techniques. J Thorac Dis 2015; 7: E311-E325
  • 60 Jenssen C, Annema JT, Clementsen P et al. Ultrasound techniques in the evaluation of the mediastinum, part 2: mediastinal lymph node anatomy and diagnostic reach of ultrasound techniques, clinical work up of neoplastic and inflammatory mediastinal lymphadenopathy using ultrasound techniques and how to learn mediastinal endosonography. J Thorac Dis 2015; 7: E439-E458
  • 61 Dietrich CF, Mathis G, Cui XW et al. Ultrasound of the pleurae and lungs. Ultrasound Med Biol 2015; 41: 351-365
  • 62 Soldati G, Copetti R, Sher S. Sonographic interstitial syndrome: the sound of lung water. J Ultrasound Med 2009; 28: 163-174
  • 63 Soldati G, Smargiassi A, Inchingolo R et al. Lung ultrasonography may provide an indirect estimation of lung porosity and airspace geometry. Respiration 2014; 88: 458-468
  • 64 Liu J, Cao HY, Wang HW et al. The Role of Lung Ultrasound in Diagnosis of Respiratory Distress Syndrome in Newborn Infants. Iran J Pediatr 2015; 25: e323
  • 65 Sekiguchi H, Schenck LA, Horie R et al. Critical Care Ultrasonography Differentiates ARDS, Pulmonary Edema, and Other Causes in the Early Course of Acute Hypoxemic Respiratory Failure. Chest 2015; 148: 912-918
  • 66 Zhao Z, Jiang L, Xi X et al. Prognostic value of extravascular lung water assessed with lung ultrasound score by chest sonography in patients with acute respiratory distress syndrome. BMC Pulm Med 2015; 15: 98
  • 67 Bass CM, Sajed DR, Adedipe AA et al. Pulmonary ultrasound and pulse oximetry versus chest radiography and arterial blood gas analysis for the diagnosis of acute respiratory distress syndrome: a pilot study. Crit Care 2015; 19: 282
  • 68 Sperandeo M, Varriale A, Sperandeo G et al. Assessment of ultrasound acoustic artifacts in patients with acute dyspnea: a multicenter study. Acta Radiol 2012; 53: 885-892
  • 69 Reissig A, Kroegel C. Transthoracic sonography of diffuse parenchymal lung disease: the role of comet tail artifacts. J Ultrasound Med 2003; 22: 173-180
  • 70 Bilotta F, Giudici LD, Zeppa IO et al. Ultrasound imaging and use of B-lines for functional lung evaluation in neurocritical care: a prospective, observational study. Eur J Anaesthesiol 2013; 30: 464-468
  • 71 Gutierrez M, Salaffi F, Carotti M et al. Utility of a simplified ultrasound assessment to assess interstitial pulmonary fibrosis in connective tissue disorders – preliminary results. Arthritis Res Ther 2011; 13: R134
  • 72 Lichtenstein D. Fluid administration limited by lung sonography: the place of lung ultrasound in assessment of acute circulatory failure (the FALLS-protocol). Expert Rev Respir Med 2012; 6: 155-162
  • 73 Volpicelli G, Caramello V, Cardinale L et al. Bedside ultrasound of the lung for the monitoring of acute decompensated heart failure. Am J Emerg Med 2008; 26: 585-591
  • 74 Hasan AA, Makhlouf HA. B-lines: Transthoracic chest ultrasound signs useful in assessment of interstitial lung diseases. Ann Thorac Med 2014; 9: 99-103
  • 75 Zheng XZ, Zheng Q, Zhou J et al. B-Lines in Assessment of Pulmonary Hypertension in Patients With Interstitial Lung Diseases: Feasibility of Transthoracic Lung Sonographic Signs. J Ultrasound Med 2015; 34: 1669-1675
  • 76 Cogliati C, Antivalle M, Torzillo D et al. Standard and pocket-size lung ultrasound devices can detect interstitial lung disease in rheumatoid arthritis patients. Rheumatology (Oxford) 2014; 53: 1497-1503
  • 77 Barskova T, Gargani L, Guiducci S et al. Lung ultrasound for the screening of interstitial lung disease in very early systemic sclerosis. Ann Rheum Dis 2013; 72: 390-395
  • 78 Pinal-Fernandez I, Pallisa-Nunez E, Selva O et al. Pleural irregularity, a new ultrasound sign for the study of interstitial lung disease in systemic sclerosis and antisynthetase syndrome. Clin Exp Rheumatol 2015; 33: 136-141
  • 79 Moazedi-Fuerst F, Kielhauser S, Brickmann K et al. Sonographic assessment of interstitial lung disease in patients with rheumatoid arthritis, systemic sclerosis and systemic lupus erythematosus. Clin Exp Rheumatol 2015; 33: 87-91
  • 80 Alrajhi K, Woo MY, Vaillancourt C. Test characteristics of ultrasonography for the detection of pneumothorax: a systematic review and meta-analysis. Chest 2012; 141: 703-708
  • 81 Alrajab S, Youssef AM, Akkus NI et al. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis. Crit Care 2013; 17: R208
  • 82 Ebrahimi A, Yousefifard M, Mohammad KH et al. Diagnostic Accuracy of Chest Ultrasonography versus Chest Radiography for Identification of Pneumothorax: A Systematic Review and Meta-Analysis. Tanaffos 2014; 13: 29-40
  • 83 Lichtenstein DA, Meziere GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest 2008; 134: 117-125
  • 84 Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care 2014; 4: 1
  • 85 Volpicelli G. Are ultrasound lung comets useful as prognostic indicator in any patients with dyspnea or chest pain?. J Card Fail 2008; 14: 263-264
  • 86 Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest 2015; 147: 1659-1670
  • 87 Lichtenstein D, Meziere G, Biderman P et al. The "lung point": an ultrasound sign specific to pneumothorax. Intensive Care Med 2000; 26: 1434-1440
  • 88 Lichtenstein DA, Meziere G, Lascols N et al. Ultrasound diagnosis of occult pneumothorax. Crit Care Med 2005; 33: 1231-1238
  • 89 Chan SS. Emergency bedside ultrasound to detect pneumothorax. Acad Emerg Med 2003; 10: 91-94
  • 90 Ding W, Shen Y, Yang J et al. Diagnosis of pneumothorax by radiography and ultrasonography: a meta-analysis. Chest 2011; 140: 859-866
  • 91 Gustavson S, Olin JW. Images in vascular medicine. Mirror image artifact. Vasc Med 2006; 11: 175-176
  • 92 Arning C. Mirror image artifacts of color Doppler images causing misinterpretation in carotid artery stenoses. J Ultrasound Med 1998; 17: 683-686
  • 93 Buttery B, Davison G. The ghost artifact. J Ultrasound Med 1984; 3: 49-52
  • 94 Madjar H. Kursbuch Mammasonographie: Ein Lehratlas nach den Richtlinien der DEGUM und der KVB. Stuttgart, New York: Thieme Verlag; 2005
  • 95 Muller N, Cooperberg PL, Rowley VA et al. Ultrasonic refraction by the rectus abdominis muscles: the double image artifact. J Ultrasound Med 1984; 3: 515-519
  • 96 Tranquart F, Grenier N, Eder V et al. Clinical use of ultrasound tissue harmonic imaging. Ultrasound Med Biol 1999; 25: 889-894
  • 97 van Wijk MC, Thijssen JM. Performance testing of medical ultrasound equipment: fundamental vs. harmonic mode. Ultrasonics 2002; 40: 585-591
  • 98 Desser TS, Jeffrey RB. Tissue harmonic imaging techniques: physical principles and clinical applications. Semin Ultrasound CT MR 2001; 22: 1-10
  • 99 Rosen EL, Soo MS. Tissue harmonic imaging sonography of breast lesions: improved margin analysis, conspicuity, and image quality compared to conventional ultrasound. Clin Imaging 2001; 25: 379-384
  • 100 Choudhry S, Gorman B, Charboneau JW et al. Comparison of tissue harmonic imaging with conventional US in abdominal disease. Radiographics 2000; 20: 1127-1135
  • 101 Mesurolle B, Helou T, El-Khoury M et al. Tissue harmonic imaging, frequency compound imaging, and conventional imaging: use and benefit in breast sonography. J Ultrasound Med 2007; 26: 1041-1051
  • 102 Gatenby JC, Hoddinott JC, Leeman S. Phasing out speckle. Phys Med Biol 1989; 34: 1683-1689
  • 103 Jespersen SK, Wilhjelm JE, Sillesen H. Multi-angle compound imaging. Ultrason Imaging 1998; 20: 81-102
  • 104 Entrekin RR, Porter BA, Sillesen HH et al. Real-time spatial compound imaging: application to breast, vascular, and musculoskeletal ultrasound. Semin Ultrasound CT MR 2001; 22: 50-64
  • 105 Jenssen C, Lauer NJ, Burmester E et al. „Art meets Science" – Gedanken zu Schnittstellen zwischen Kunst und Wissenschaft und zum Zusammenhang von Informationsgehalt und ästhetischer Faszination in Endoskopie und Bildgebung. Endoskopie heute 2013; 26: 2-12