Rofo 2016; 188(09): 834-845
DOI: 10.1055/s-0042-104936
Review
© Georg Thieme Verlag KG Stuttgart · New York

Imaging of Cystic Fibrosis Lung Disease and Clinical Interpretation

Bildgebung der Lunge bei Mukoviszidose und klinische Interpretation
M. O. Wielpütz
1   Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
2   Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
3   Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
,
M. Eichinger
1   Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
2   Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
3   Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
,
J. Biederer
1   Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
2   Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
4   Radiologie Darmstadt, Groß-Gerau Community Hospital, Groß-Gerau, Germany
,
S. Wege
5   Department of Pulmonology and Respiratory Medicine, Cystic Fibrosis Center, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
,
M. Stahl
2   Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
6   Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
,
O. Sommerburg
2   Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
6   Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
,
M. A. Mall
2   Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
6   Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
7   Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
,
H. U. Kauczor
1   Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
2   Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
3   Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
,
M. Puderbach
1   Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Heidelberg, Germany
2   Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Heidelberg, Germany
3   Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Heidelberg, Germany
8   Department of Diagnostic and Interventional Radiology, Hufeland Hospital, Bad Langensalza, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

08. Dezember 2015

08. März 2016

Publikationsdatum:
13. April 2016 (online)

Abstract

Progressive lung disease in cystic fibrosis (CF) is the life-limiting factor of this autosomal recessive genetic disorder. Increasing implementation of CF newborn screening allows for a diagnosis even in pre-symptomatic stages. Improvements in therapy have led to a significant improvement in survival, the majority now being of adult age. Imaging provides detailed information on the regional distribution of CF lung disease, hence longitudinal imaging is recommended for disease monitoring in the clinical routine. Chest X-ray (CXR), computed tomography (CT) and magnetic resonance imaging (MRI) are now available as routine modalities, each with individual strengths and drawbacks, which need to be considered when choosing the optimal modality adapted to the clinical situation of the patient. CT stands out with the highest morphological detail and has often been a substitute for CXR for regular severity monitoring at specialized centers. Multidetector CT data can be post-processed with dedicated software for a detailed measurement of airway dimensions and bronchiectasis and potentially a more objective and precise grading of disease severity. However, changing to CT was inseparably accompanied by an increase in radiation exposure of CF patients, a young population with high sensitivity to ionizing radiation and lifetime accumulation of dose. MRI as a cross-sectional imaging modality free of ionizing radiation can depict morphological hallmarks of CF lung disease at lower spatial resolution but excels with comprehensive functional lung imaging, with time-resolved perfusion imaging currently being most valuable.

Key Points:

• Hallmarks are bronchiectasis, mucus plugging, air trapping, perfusion abnormalities, and emphysema.

• Imaging is more sensitive to disease progression than lung function testing.

• CT provides the highest morphological detail but is associated with radiation exposure.

• MRI shows comparable sensitivity for morphology but excels with additional functional information.

• MRI sensitively depicts reversible abnormalities such as mucus plugging and perfusion abnormalities.

Citation Format:

• Wielpütz MO, Eichinger M, Biederer J et al. Imaging of Cystic Fibrosis Lung Disease and Clinical Interpretation. Fortschr Röntgenstr 2016; 188: 834 – 845

Zusammenfassung

Die progressive Lungenerkrankung bestimmt Morbidität und Mortalität der autosomal-rezessiv vererbten Mukoviszidose (Cystische Fibrose, CF). Die Implementierung der CF in das Neugeborenen-Screening erlaubt eine Diagnosestellung häufig bereits in einem präsymptomatischen Stadium. Verbesserungen der Therapie haben zudem eine stetig zunehmende Lebenserwartung ermöglicht, sodass die Mehrzahl der Patienten heute erwachsen ist. Da bildgebende Verfahren detaillierte Informationen über den regionalen Krankheitsverlauf bieten, werden heute Kontrollen in regelmäßigen Abständen empfohlen. Röntgenaufnahmen des Thorax, die Computertomografie (CT) und die Magnetresonanztomografie (MRT) stehen zur Verfügung – jedes Verfahren mit spezifischen Stärken und Schwächen, sodass die Wahl des Verfahrens an die individuelle klinische Situation des Patienten angepasst werden kann. Die CT bietet die höchste Detailauflösung und kann mittels Software nachverarbeitet werden, welche Atemwegsveränderungen quantitativ erfassen kann und potenziell eine objektivere Schweregradeinteilung ermöglicht. Die CT hat daher die Röntgenaufnahme an spezialisierten Zentren weitgehend abgelöst. Entsprechend ist die Strahlenexposition der CF-Erkrankten angestiegen, die altersbedingt besonders sensibel für ionisierende Strahlen sind und während ihres Lebens eine relevante Dosis akkumulieren können. Die MRT als alternatives strahlungsfreies Schnittbildverfahren stellt die typischen morphologischen Veränderungen der CF mit vergleichbarer klinischer Information bei etwas geringerer Detailauflösung dar. Mehr als jedes andere Verfahren ermöglicht die MRT eine Beurteilung der regionalen Lungenfunktion, wobei sich die zeitlich hoch aufgelöste Perfusions-MRT als praktikabel erwiesen hat.

Kernaussagen:

• Bildgebende Zeichen der Mukoviszidose sind Bronchiektasen, Mukoidimpaktionen, Air-Trapping, Perfusionsstörungen und Emphysem.

• Die Bildgebung ist sensitiver als die Lungenfunktionsprüfung für die Beurteilung der Krankheitsprogression.

• Die CT hat die höchste morphologische Auflösung, jedoch begleitet von bedeutsamer Strahlenexposition.

• Die MRT zeigt vergleichbare morphologische Details, ihre Stärke sind zusätzliche funktionelle Informationen.

• Die MRT stellt reversible Veränderungen wie Mukoidimpaktionen und Perfusionsstörungen sensitiv dar.

 
  • References

  • 1 Stern M, Wiedemann B, Wenzlaff P. From registry to quality management: the German Cystic Fibrosis Quality Assessment project 1995 – 2006. Eur Respir J 2008; 31: 29-35
  • 2 Sommerburg O, Hammermann J, Lindner M et al. Five years of experience with biochemical cystic fibrosis newborn screening based on IRT/PAP in Germany. Pediatr Pulmonol 2015; 50: 655-664
  • 3 Kerem E, Reisman J, Corey M et al. Prediction of mortality in patients with cystic fibrosis. N Engl J Med 1992; 326: 1187-1191
  • 4 Brody AS, Sucharew H, Campbell JD et al. Computed tomography correlates with pulmonary exacerbations in children with cystic fibrosis. Am J Respir Crit Care Med 2005; 172: 1128-1132
  • 5 Terheggen-Lagro S, Truijens N, van Poppel N et al. Correlation of six different cystic fibrosis chest radiograph scoring systems with clinical parameters. Pediatr Pulmonol 2003; 35: 441-445
  • 6 de Jong PA, Lindblad A, Rubin L et al. Progression of lung disease on computed tomography and pulmonary function tests in children and adults with cystic fibrosis. Thorax 2006; 61: 80-85
  • 7 Davis SD, Fordham LA, Brody AS et al. Computed tomography reflects lower airway inflammation and tracks changes in early cystic fibrosis. Am J Respir Crit Care Med 2007; 175: 943-950
  • 8 Sly PD, Brennan S, Gangell C et al. Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 2009; 180: 146-152
  • 9 Donadieu J, Roudier C, Saguintaah M et al. Estimation of the radiation dose from thoracic CT scans in a cystic fibrosis population. Chest 2007; 132: 1233-1238
  • 10 O'Connell OJ, McWilliams S, McGarrigle A et al. Radiologic imaging in cystic fibrosis: cumulative effective dose and changing trends over 2 decades. Chest 2012; 141: 1575-1583
  • 11 Wielpütz MO, Puderbach M, Kopp-Schneider A et al. Magnetic Resonance Imaging Detects Changes in Structure and Perfusion, and Response to Therapy in Early Cystic Fibrosis Lung Disease. Am J Respir Crit Care Med 2014; 189: 956-965
  • 12 Wielpütz MO, Mall MA. Imaging modalities in cystic fibrosis: emerging role of MRI. Curr Opin Pulm Med 2015; 21: 609-616
  • 13 Hansell DM, Bankier AA, MacMahon H et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008; 246: 697-722
  • 14 Wormanns D, Hamer OW. Glossar thoraxradiologischer Begriffe entsprechend der Terminologie der Fleischner Society. Fortschr Röntgenstr 2015; 187: 638-661
  • 15 Benden C, Wallis C, Owens CM et al. The Chrispin-Norman score in cystic fibrosis: doing away with the lateral view. Eur Respir J 2005; 26: 894-897
  • 16 O'Connor OJ, Vandeleur M, McGarrigle AM et al. Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients. Radiology 2010; 257: 820-829
  • 17 Kauczor HU, Wielpütz MO, Owsijewitsch M et al. Computed tomographic imaging of the airways in COPD and asthma. J Thorac Imaging 2011; 26: 290-300
  • 18 Mott LS, Park J, Gangell CL et al. Distribution of early structural lung changes due to cystic fibrosis detected with chest computed tomography. J Pediatr 2013; 163: 243-248 e241–243
  • 19 Wielpütz MO, Eichinger M, Weinheimer O et al. Automatic airway analysis on multidetector computed tomography in cystic fibrosis: correlation with pulmonary function testing. J Thorac Imaging 2013; 28: 104-113
  • 20 Bankier AA, Schaefer-Prokop C, De Maertelaer V et al. Air trapping: comparison of standard-dose and simulated low-dose thin-section CT techniques. Radiology 2007; 242: 898-906
  • 21 Hansell DM. Small airways diseases: detection and insights with computed tomography. Eur Respir J 2001; 17: 1294-1313
  • 22 Eichinger M, Heussel CP, Kauczor HU et al. Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease. J Magn Reson Imaging 2010; 32: 1370-1378
  • 23 Kubo T, Lin PJ, Stiller W et al. Radiation dose reduction in chest CT: a review. Am J Roentgenol 2008; 190: 335-343
  • 24 Stiller W. Grundlagen der Mehrzeilendetektor-Computertomografie. Der Radiologe 2011; 51: 1061-1078
  • 25 Sly PD, Gangell CL, Chen L et al. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med 2013; 368: 1963-1970
  • 26 Hayes Jr D, Winkler MA, Kirkby S et al. Preprocedural planning with prospectively triggered multidetector row CT angiography prior to bronchial artery embolization in cystic fibrosis patients with massive hemoptysis. Lung 2012; 190: 221-225
  • 27 Biederer J, Beer M, Hirsch W et al. MRI of the lung (2/3). Why ... when ... how?. Insights Imaging 2012; 3: 355-371
  • 28 Puderbach M, Eichinger M, Gahr J et al. Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 2007; 17: 716-724
  • 29 Puderbach M, Eichinger M, Haeselbarth J et al. Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x-ray. Invest Radiol 2007; 42: 715-725
  • 30 Biederer J, Heussel CP, Puderbach M et al. Functional magnetic resonance imaging of the lung. Semin Respir Crit Care Med 2014; 35: 74-82
  • 31 Dournes G, Grodzki D, Macey J et al. Quiet Submillimeter MR Imaging of the Lung Is Feasible with a PETRA Sequence at 1.5 T. Radiology 2015; 276: 258-265
  • 32 Lutterbey G, Wattjes MP, Doerr D et al. Atelectasis in children undergoing either propofol infusion or positive pressure ventilation anesthesia for magnetic resonance imaging. Paediatr Anaesth 2007; 17: 121-125
  • 33 Blitman NM, Lee HK, Jain VR et al. Pulmonary atelectasis in children anesthetized for cardiothoracic MR: evaluation of risk factors. J Comput Assist Tomogr 2007; 31: 789-794
  • 34 Loeve M, van Hal PT, Robinson P et al. The spectrum of structural abnormalities on CT scans from patients with CF with severe advanced lung disease. Thorax 2009; 64: 876-882
  • 35 Chrispin AR, Norman AP. The systematic evaluation of the chest radiograph in cystic fibrosis. Pediatr Radiol 1974; 2: 101-105
  • 36 Mall MA, Hartl D. CFTR: cystic fibrosis and beyond. Eur Respir J 2014; 44: 1042-1054
  • 37 Rosenfeld M, Ratjen F, Brumback L et al. Inhaled hypertonic saline in infants and children younger than 6 years with cystic fibrosis: the ISIS randomized controlled trial. JAMA 2012; 307: 2269-2277
  • 38 Eibel R, Herzog P, Dietrich O et al. Pulmonary abnormalities in immunocompromised patients: comparative detection with parallel acquisition MR imaging and thin-section helical CT. Radiology 2006; 241: 880-891
  • 39 Eichinger M, Optazaite DE, Kopp-Schneider A et al. Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 2012; 81: 1321-1329
  • 40 Wielpütz MO, Weinheimer O, Eichinger M et al. Pulmonary emphysema in cystic fibrosis detected by densitometry on chest multidetector computed tomography. PLoS One 2013; 8: e73142
  • 41 Mets OM, Roothaan SM, Bronsveld I et al. Emphysema Is Common in Lungs of Cystic Fibrosis Lung Transplantation Patients: A Histopathological and Computed Tomography Study. PLoS One 2015; 10: e0128062
  • 42 Mall M, Grubb BR, Harkema JR et al. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat Med 2004; 10: 487-493
  • 43 Mall MA, Harkema JR, Trojanek JB et al. Development of chronic bronchitis and emphysema in β-epithelial Na+ channel-overexpressing mice. Am J Respir Crit Care Med 2008; 177: 730-742
  • 44 Wielpuetz MO, Eichinger M, Zhou Z et al. In vivo monitoring of cystic fibrosis-like lung disease in mice by volumetric computed tomography. Eur Respir J 2011; 38: 1060-1070
  • 45 Stern EJ, Müller NL, Swensen SJ et al. CT mosaic pattern of lung attenuation: etiologies and terminology. Journal of thoracic imaging 1995; 10: 294-297
  • 46 Hopkins SR, Wielpütz MO, Kauczor HU. Imaging lung perfusion. J Appl Physiol 2012; 113: 328-339
  • 47 Eichinger M, Puderbach M, Fink C et al. Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis--initial results. Eur Radiol 2006; 16: 2147-2152
  • 48 Brasfield D, Hicks G, Soong S et al. The chest roentgenogram in cystic fibrosis: a new scoring system. Pediatrics 1979; 63: 24-29
  • 49 Weatherly MR, Palmer CG, Peters ME et al. Wisconsin cystic fibrosis chest radiograph scoring system. Pediatrics 1993; 91: 488-495
  • 50 Bhalla M, Turcios N, Aponte V et al. Cystic fibrosis: scoring system with thin-section CT. Radiology 1991; 179: 783-788
  • 51 Helbich TH, Heinz-Peer G, Eichler I et al. Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology 1999; 213: 537-544
  • 52 Demirkazik FB, Ariyurek OM, Ozcelik U et al. High resolution CT in children with cystic fibrosis: correlation with pulmonary functions and radiographic scores. Eur J Radiol 2001; 37: 54-59
  • 53 Rosenow T, Oudraad MC, Murray CP. PRAGMA-CF et al. A Quantitative Structural Lung Disease Computed Tomography Outcome in Young Children with Cystic Fibrosis. Am J Respir Crit Care Med 2015; 191: 1158-1165
  • 54 Bauman G, Puderbach M, Heimann T et al. Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 2013; 82: 2371-2377
  • 55 Kohlmann P, Strehlow J, Jobst B et al. Automatic lung segmentation method for MRI-based lung perfusion studies of patients with chronic obstructive pulmonary disease. Int J Comput Assist Radiol Surg 2014; 10: 15
  • 56 Ohno Y, Hatabu H, Murase K et al. Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: Preliminary experience in 40 subjects. J Magn Reson Imaging 2004; 20: 353-365
  • 57 Risse F, Eichinger M, Kauczor HU et al. Improved visualization of delayed perfusion in lung MRI. Eur J Radiol 2011; 77: 105-110
  • 58 van Beek EJ, Wild JM, Kauczor HU et al. Functional MRI of the lung using hyperpolarized 3-helium gas. J Magn Reson Imaging 2004; 20: 540-554
  • 59 Donnelly LF, MacFall JR, McAdams HP et al. Cystic fibrosis: combined hyperpolarized 3He-enhanced and conventional proton MR imaging in the lung--preliminary observations. Radiology 1999; 212: 885-889
  • 60 Mentore K, Froh DK, de Lange EE et al. Hyperpolarized HHe 3 MRI of the lung in cystic fibrosis: assessment at baseline and after bronchodilator and airway clearance treatment. Acad Radiol 2005; 12: 1423-1429
  • 61 van Beek EJ, Hill C, Woodhouse N et al. Assessment of lung disease in children with cystic fibrosis using hyperpolarized 3-Helium MRI: comparison with Shwachman score, Chrispin-Norman score and spirometry. Eur Radiol 2007; 17: 1018-1024
  • 62 Bannier E, Cieslar K, Mosbah K et al. Hyperpolarized 3He MR for sensitive imaging of ventilation function and treatment efficiency in young cystic fibrosis patients with normal lung function. Radiology 2010; 255: 225-232
  • 63 Triphan SM, Jobst BJ, Breuer FA et al. Echo time dependence of observed T in the human lung. J Magn Reson Imaging 2015; DOI: 10.1002/jmri.24840.
  • 64 Stadler A, Jakob PM, Griswold M et al. T1 mapping of the entire lung parenchyma: Influence of respiratory phase and correlation to lung function test results in patients with diffuse lung disease. Magn Reson Med 2008; 59: 96-101
  • 65 Jakob PM, Wang T, Schultz G et al. Assessment of human pulmonary function using oxygen-enhanced T(1) imaging in patients with cystic fibrosis. Magn Reson Med 2004; 51: 1009-1016
  • 66 Bauman G, Scholz A, Rivoire J et al. Lung ventilation- and perfusion-weighted Fourier decomposition magnetic resonance imaging: in vivo validation with hyperpolarized 3He and dynamic contrast-enhanced MRI. Magn Reson Med 2013; 69: 229-237
  • 67 Müller FM, Bend J, Rietschel E et al. S3-Leitlinie „Lungenerkrankung bei Mukoviszidose “, Modul 1: Diagnostik und Therapie nach dem ersten Nachweis von Pseudomonas aeruginosa. 2013; http://www.awmf.org/uploads/tx_szleitlinien/026-022l_S3_Lungenerkrankung_bei_Mukoviszidose_Modul_1_2013-06_01.pdf
  • 68 Kuo W, Ciet P, Tiddens HA et al. Monitoring cystic fibrosis lung disease by computed tomography. Radiation risk in perspective. Am J Respir Crit Care Med 2014; 189: 1328-1336
  • 69 Stöver B, Rogalla P. CT-Untersuchungen bei Kindern. Der Radiologe 2008; 48: 243-248