Z Gastroenterol 2016; 54(05): 406-408
DOI: 10.1055/s-0042-107486
Editorial
© Georg Thieme Verlag KG Stuttgart · New York

Neue Erkenntnisse zur Rolle der Mikrobiota im kolorektalen Karzinom

Contributor(s):
Sebastian Zeissig
1   Medizinische Klinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden
2   Zentrum für Regenerative Therapien Dresden (CRTD), Technische Universität Dresden, Dresden
,
Jochen Hampe
1   Medizinische Klinik I, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden
› Author Affiliations
Further Information

Publication History

Publication Date:
12 May 2016 (online)

Kolorektale Karzinome entstehen auf dem Boden somatischer Mutationen. Aktuelle Arbeiten zeigen, dass die Mikrobiota und von ihr aktivierte entzündliche Signalwege entscheidend zum Tumorwachstum beitragen (Peuker et al., Nat Med 2016).

 
  • Referenzen

  • 1 Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759-767
  • 2 Lasry A, Zinger A, Ben-Neriah Y. Inflammatory networks underlying colorectal cancer. Nature immunology 2016; 17: 230-240
  • 3 Terzic J, Grivennikov S, Karin E et al. Inflammation and colon cancer. Gastroenterology 2010; 138: 2101-2114 e5
  • 4 West NR, McCuaig S, Franchini F et al. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol 2015; 15: 615-629
  • 5 Tosolini M, Kirilovsky A, Mlecnik B et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 2011; 71: 1263-1271
  • 6 Bollrath J, Phesse TJ, von Burstin VA et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009; 15: 91-102
  • 7 Greten FR, Eckmann L, Greten TF et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitisassociated cancer. Cell 2004; 118 (03) 285-96
  • 8 Grivennikov S, Karin E, Terzic J et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009; 15: 103-113
  • 9 Grivennikov SI, Wang K, Mucida D et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491: 254-258
  • 10 Schwitalla S, Fingerle AA, Cammareri P et al. Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell 2013; 152: 25-38
  • 11 Lee SH, Hu LL, Gonzalez-Navajas J et al. ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med 2010; 16: 665-670
  • 12 Rakoff-Nahoum S, Medzhitov R. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 2007; 317: 124-127
  • 13 Scheeren FA, Kuo AH, van Weele LJ et al. A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis. Nat Cell Biol 2014; 16: 1238-1248
  • 14 Wang K, Kim MK, Di Caro G et al. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 2014; 41: 1052-1063
  • 15 Kirchberger S, Royston DJ, Boulard O et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med 2013; 210: 917-931
  • 16 Castellarin M, Warren RL, Freeman JD et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22: 299-306
  • 17 Kostic AD, Gevers D, Pedamallu CS et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012; 22: 292-298
  • 18 Dejea CM, Wick EC, Hechenbleikner EM et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA 2014; 111: 18 321-18326
  • 19 Wang EL, Qian ZR, Nakasono M et al. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 2010; 102: 908-915
  • 20 Kostic AD, Chun E, Robertson L et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013; 14: 207-215
  • 21 Peuker K, Muff S, Wang J et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med 2016;
  • 22 Duque J, Fresno M, Iniguez MA. Expression and function of the nuclear factor of activated T cells in colon carcinoma cells: involvement in the regulation of cyclooxygenase-2. J Biol Chem 2005; 280: 8686-8693
  • 23 Masuo T, Okamura S, Zhang Y et al. Cyclosporine A inhibits colorectal cancer proliferation probably by regulating expression levels of c-Myc, p21(WAF1/CIP1) and proliferating cell nuclear antigen. Cancer Lett 2009; 285: 66-72
  • 24 Adami J, Gabel H, Lindelof B et al. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br J Cancer 2003; 89: 1221-1227
  • 25 Dantal J, Hourmant M, Cantarovich D et al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomized comparison of two cyclosporin regimens. Lancet 1998; 351: 623-628
  • 26 Konig A, Fernandez-Zapico ME, Ellenrieder V. Primers on molecular pathways--the NFAT transcription pathway in pancreatic cancer. Pancreatology: official journal of the International Association of Pancreatology (IAP) [et al] 2010; 10: 416-422
  • 27 Feng Q, Liang S, Jia H et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nature communications 2015; 6: 6528