Planta Med 2016; 82(11/12): 1096-1104
DOI: 10.1055/s-0042-108059
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Isolation of Bioactive Rotenoids and Isoflavonoids from the Fruits of Millettia caerulea [*]

Yulin Ren
1   Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
,
P. Annécie Benatrehina
1   Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
,
Ulyana Muñoz Acuña
2   Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
,
Chunhua Yuan
3   Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, United States
,
Hee-Byung Chai
1   Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
,
Tran Ngoc Ninh
4   Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
,
Esperanza J. Carcache de Blanco
1   Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
2   Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
,
Djaja D. Soejarto
5   Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
6   Science and Education, Field Museum of Natural History, Chicago, Illinois, United States
,
A. Douglas Kinghorn
1   Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
› Author Affiliations
Further Information

Publication History

received 05 February 2016
revised 20 April 2016

accepted 21 April 2016

Publication Date:
09 June 2016 (online)

Abstract

Three new rotenoids (13), two new isoflavonoids (4 and 5), and six known analogues (611) were isolated from an n-hexane partition of a methanol extract of the fruits of Millettia caerulea, with the structures of the new compounds elucidated by analysis of their spectroscopic data. The relative configurations of the rotenoids were determined by interpretation of their NMR spectroscopic data, and their absolute configurations were established using electronic circular dichroism spectra and specific rotation values. All compounds isolated were evaluated for their cell growth inhibitory activity against the HT-29 human colon cancer cell line, and the known compounds, (−)-3-hydroxyrotenone (6) and (−)-rotenone (7), were found to be potently active. When tested in an NF-κB inhibition assay, compound 6 showed activity. This compound, along with the new compound, (−)-caeruleanone D (1), and the known compound, ichthynone (8), exhibited K-Ras inhibitory potency. Further bioactivity studies showed that the new compounds, (−)-3-deoxycaeruleanone D (2) and (−)-3-hydroxycaeruleanone A (3), and the known compounds 8 and 11 induced quinone reductase in murine Hepa 1c1c7 cells.

* Dedicated to Professor Dr. Dr. h. c. mult. Kurt Hostettmann in recognition of his outstanding contributions to natural product research.


Supporting Information

 
  • References

  • 1 Banzouzi JT, Prost A, Rajemiarimiraho M, Ongoka P. Traditional uses of the African Millettia species (Fabaceae). Int J Botany 2008; 4: 406-420
  • 2 Bueno Pérez L, Pan L, Muñoz Acuña U, Li J, Chai HB, Gallucci JC, Ninh TN, Carcache de Blanco EJ, Soejarto DD, Kinghorn AD. Caeruleanone A, a rotenoid with a new arrangement of the D-ring from the fruits of Millettia caerulea . Org Lett 2014; 16: 1462-1465
  • 3 Yankep E, Njamen D, Fotsing MT, Fomum ZT, Mbanya JC, Giner RM, Recio MC, Máñez S, Ríos JL. Griffonianone D, an isoflavone with anti-inflammatory activity from the root bark of Millettia griffoniana . J Nat Prod 2003; 66: 1288-1290
  • 4 Ye H, Fu A, Wu W, Li Y, Wang G, Tang M, Li S, He S, Zhong S, Lai H, Yang J, Xiang M, Peng A, Chen L. Cytotoxic and apoptotic effects of constituents from Millettia pachycarpa Benth. Fitoterapia 2012; 83: 1402-1408
  • 5 Deyou T, Gumula I, Pang F, Gruhonjic A, Mumo M, Holleran J, Duffy S, Fitzpatrick PA, Heydenreich M, Landberg G, Derese S, Avery V, Rissanen K, Erdélyi M, Yenesew A. Rotenoids, flavonoids, and chalcones from the root bark of Millettia usaramensis . J Nat Prod 2015; 78: 2932-2939
  • 6 Wu W, Ye H, Wan L, Han X, Wang G, Hu J, Tang M, Duan X, Fan Y, He S, Huang L, Pei H, Wang X, Li X, Xie C, Zhang R, Yuan Z, Mao Y, Wei Y, Chen L. Millepachine, a novel chalcone, induces G2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo . Carcinogenesis 2013; 34: 1636-1643
  • 7 Yang Z, Wu W, Wang J, Liu L, Li L, Yang J, Wang G, Cao D, Zhang R, Tang M, Wen J, Zhu J, Xiang W, Wang F, Ma L, Xiang M, You J, Chen L. Synthesis and biological evaluation of novel millepachine derivatives as a new class of tubulin polymerization inhibitors. J Med Chem 2014; 57: 7977-7989
  • 8 Wang J, Yang Z, Wen J, Ma F, Wang F, Yu K, Tang M, Wu W, Dong Y, Cheng X, Nie C, Chen L. SKLB-M8 induces apoptosis through the AKT/mTOR signaling pathway in melanoma models and inhibits angiogenesis with decrease of ERK1/2 phosphorylation. J Pharmacol Sci 2014; 126: 198-207
  • 9 Wu Y, Cao D, Wang F, Ma L, Gao G, Chen L. Synthesis and evaluation of millepachine amino acid prodrugs with enhanced solubility as antitumor agents. Chem Biol Drug Des 2015; 86: 559-567
  • 10 Kinghorn AD, Carcache de Blanco EJ, Chai HB, Orjala J, Farnsworth NR, Soejarto DD, Oberlies NH, Wani MC, Kroll DJ, Pearce CJ, Swanson SM, Kramer RA, Rose WC, Fairchild CR, Vite GD, Emanuel S, Jarjoura D, Cope FO. Discovery of anticancer agents of diverse natural origin. Pure Appl Chem 2009; 81: 1051-1063
  • 11 Magalhães AF, Azevedo Tozzi AMG, Noronha Sales BHL, Magalhães EG. Twenty-three flavonoids from Lonchocarpus subglaucescens . Phytochemistry 1996; 42: 1459-1471
  • 12 Blatt CTT, Chávez D, Chai HB, Graham JG, Cabieses F, Farnsworth NR, Cordell GA, Pezzuto JM, Kinghorn AD. Cytotoxic flavonoids from the stem bark of Lonchocarpus aff. fluvialis . Phytother Res 2002; 16: 320-325
  • 13 Blaskó G, Shieh HL, Pezzuto JM, Cordell GA. 13C-NMR spectral assignment and evaluation of the cytotoxic potential of rotenone. J Nat Prod 1989; 52: 1363-1366
  • 14 Schwarz JSP, Cohen AI, Ollis WD, Kaczka EA, Jackman LM. The extractives of Piscidia erythrina L. – I: the constitution of ichthynone. Tetrahedron 1964; 20: 1317-1330
  • 15 Tahara S, Narita E, Ingham JL, Mizutani J. New rotenoids from the root bark of Jamaican dogwood (Piscidia erythrina L.). Z Naturforsch C 1990; 45: 154-160
  • 16 Fang N, Casida JE. Novel bioactive cubé; insecticide constituents: isolation and preparation of 13-homo-13-oxa-6a,12a-dehydrorotenoids. J Org Chem 1997; 62: 350-353
  • 17 Arriaga AMC, Lima JQ, Vasconcelos JN, de Oliveira MCF, Andrade-Neto M, Santiago GMP, Uchoa DEA, Malcher GT, Mafezoli J, Braz-Filho R. Unequivocal assignments of flavonoids from Tephrosia sp. (Fabaceae). Magn Reson Chem 2009; 47: 537-540
  • 18 Andrei CC, Vieira PC, Fernandes JB, da Silva MFDGF, Rodrigues Fo E. Dimethylchromene rotenoids from Tephrosia candida . Phytochemistry 1997; 46: 1081-1085
  • 19 Yenesew A, Midiwo JO, Waterman PG. Rotenoids, isoflavones and chalcones from the stem bark of Millettia usaramensis subspecies usaramensis . Phytochemistry 1998; 47: 295-300
  • 20 Wu X, Liao HB, Li GQ, Liu Y, Cui L, Wu KF, Zhu XH, Zeng XB. Cytotoxic rotenoid glycosides from the seeds of Amorpha fruticosa . Fitoterapia 2015; 100: 75-80
  • 21 Gottlieb HE, Kotlyar V, Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 1997; 62: 7512-7515
  • 22 Abidi SL, Abidi MS. 13C NMR spectral characterization of epimeric rotenone and some related tetrahydrobenzopyranofurobenzopyranones. J Heterocycl Chem 1983; 20: 1687-1692
  • 23 Yenesew A, Derese S, Midiwo JO, Oketch-Rabah HA, Lisgarten J, Palmer R, Heydenreich M, Peter MG, Akala H, Wangui J, Liyala P, Waters NC. Anti-plasmodial activities and X-ray crystal structures of rotenoids from Millettia usaramensis subspecies usaramensis . Phytochemistry 2003; 64: 773-779
  • 24 Fang N, Rowlands JC, Casida JE. Anomalous structure-activity relationships of 13-homo-13-oxarotenoids and 13-homo-13-oxadehydrorotenoids. Chem Res Toxicol 1997; 10: 853-858
  • 25 Fang N, Casida JE. Cubé resin: insecticide: identification and biological activity of 29 rotenoid constituents. J Agric Food Chem 1999; 47: 2130-2136
  • 26 Combrisson S, Roques BP. Utilisation de lʼeffet Overhauser des mesures de relaxation en RMN 1H, et des deplacements chimiques en RMN 13C dans lʼetude de la conformation des amides – I: Rappels theoriques sur lʼeffet Overhauser dans les systemes en echange. Application a lʼetude conformationnelle dʼamides aromatiques (acetylpyrroles) et dʼamides α-β insatures (N-acylindolines et N-acyltetrahydroquinoleines). Tetrahedron 1976; 32: 1507-1516
  • 27 Teerawatananond T, Chaichit N, Muangsin N. Co-crystal structure of 11-hydroxy-2,3,9-trimethoxy-6H-chromeno[3,4-b]chromen-12-one and 11-hydroxy-2,3,9-trimethoxy-chromeno[3,4-b]chromene-6,12-dione. J Chem Crystallogr 2010; 40: 591-596
  • 28 Büchi G, Crombie L, Godin PJ, Kaltenbronn JS, Siddalingaiah KS, Whiting DA. The absolute configuration of rotenone. J Chem Soc 1961; 2843-2860
  • 29 Verbit L, Clark-Lewis JW. Optically active aromatic chromophores – VIII: Studies in the isoflavanoid and rotenoid series. Tetrahedron 1968; 24: 5519-5527
  • 30 Kostova I, Berova N, Ivanov P, Mikhova B, Rakovska R. Stereochemical studies of some 12a-substituted rotenoid derivatives. Croat Chem Acta 1991; 64: 637-647
  • 31 Wangensteen H, Alamgir M, Rajia S, Samuelsen AB, Malterud KE. Rotenoids and isoflavones from Sarcolobus globosus . Planta Med 2005; 71: 754-758
  • 32 Vasconcelos JN, Santiago GMP, Lima JQ, Mafezoli J, de Lemos TLG, da Silva FRL, Lima MAS, Pimenta ATÁ, Braz-Filho R, Arriaga AMC, Cesarin-Sobrinho D. Rotenoids from Tephrosia toxicaria with larvicidal activity against Aedes aegypti, the main vector of dengue fever. Quim Nova 2012; 35: 1097-1100
  • 33 Slade D, Ferreira D, Marais JPJ. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry 2005; 66: 2177-2215
  • 34 Yankep E, Mbafor JT, Fomum ZT, Steinbeck C, Messanga BB, Nyasse B, Budzikiewicz H, Lenz C, Schmickler H. Further isoflavonoid metabolites from Millettia griffoniana (Baill.). Phytochemistry 2001; 56: 363-368
  • 35 Wanda GJ, Starcke S, Zierau O, Njamen D, Richter T, Vollmer G. Estrogenic activity of griffonianone C, an isoflavone from the root bark of Millettia griffoniana: regulation of the expression of estrogen responsive genes in uterus and liver of ovariectomized rats. Planta Med 2007; 73: 512-518
  • 36 Ito C, Itoigawa M, Tan HTW, Tokuda H, Yang Mou X, Mukainaka T, Ishikawa T, Nishino H, Furukawa H. Anti-tumor-promoting effects of isoflavonoids on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett 2000; 152: 187-192
  • 37 Azebaze AGB, Meyer M, Valentin A, Nguemfo EL, Fomum ZT, Nkengfack AE. Prenylated xanthone derivatives with antiplasmodial activity from Allanblackia monticola STANER L.C. Chem Pharm Bull (Tokyo) 2006; 54: 111-113
  • 38 Menasria F, Azebaze AGB, Billard C, Faussat AM, Nkengfack AE, Meyer M, Kolb JP. Apoptotic effects on B-cell chronic lymphocytic leukemia (B-CLL) cells of heterocyclic compounds isolated from Guttiferae. Leuk Res 2008; 32: 1914-1926
  • 39 Loisel S, Le Ster K, Meyer M, Berthou C, Youinou P, Kolb JP, Billard C. Therapeutic activity of two xanthones in a xenograft murine model of human chronic lymphocytic leukemia. J Hematol Oncol 2010; 3: 49
  • 40 Hussein AA, Bozzi B, Correa M, Capson TL, Kursar TA, Coley PD, Solis PN, Gupta MP. Bioactive constituents from three Vismia species. J Nat Prod 2003; 66: 858-860
  • 41 Rouger C, Derbré S, Charreau B, Pabois A, Cauchy T, Litaudon M, Awang K, Richomme P. Lepidotol A from Mesua lepidota inhibits inflammatory and immune mediators in human endothelial cells. J Nat Prod 2015; 78: 2187-2197
  • 42 Rehbein J, Hiersemann M. Claisen rearrangement of aliphatic allyl vinyl ethers from 1912 to 2012: 100 years of electrophilic catalysis. Synthesis 2013; 45: 1121-1159
  • 43 Ren Y, Acuña UM, Jiménez F, García R, Mejía M, Chai HB, Gallucci JC, Farnsworth NR, Soejarto DD, Carcache de Blanco EJ, Kinghorn AD. Cytotoxic and NF-κB inhibitory sesquiterpene lactones from Piptocoma rufescens . Tetrahedron 2012; 68: 2671-2678
  • 44 Cheenpracha S, Karalai C, Ponglimanont C, Chantrapromma K. Cytotoxic rotenoloids from the stems of Derris trifoliata . Can J Chem 2007; 85: 1019-1022
  • 45 Hsu YC, Chiang JH, Yu CS, Hsia TC, Wu RSC, Lien JC, Lai KC, Yu FS, Chung JG. Antitumor effects of deguelin on H460 human lung cancer cells in vitro and in vivo: roles of apoptotic cell death and H460 tumor xenografts model. Environ Toxicol DOI: 10.1002/tox.22214. advance online publication 23 November 2015
  • 46 Udeani GO, Gerhäuser C, Thomas CF, Moon RC, Kosmeder JW, Kinghorn AD, Moriarty RM, Pezzuto JM. Cancer chemopreventive activity mediated by deguelin, a naturally occurring rotenoid. Cancer Res 1997; 57: 3424-3428
  • 47 Bueno Pérez L, Li J, Lantvit DD, Pan L, Ninh TN, Chai HB, Soejarto DD, Swanson SM, Lucas DM, Kinghorn AD. Bioactive constituents of Indigofera spicata . J Nat Prod 2013; 76: 1498-1504
  • 48 Garg A, Aggarwal BB. Nuclear transcription factor-κB as a target for cancer drug development. Leukemia 2002; 16: 1053-1068
  • 49 Muñoz Acuña U, Matthew S, Pan L, Kinghorn AD, Swanson SM, Carcache de Blanco EJ. Apoptosis induction by 13-acetoxyrolandrolide through the mitochondrial intrinsic pathway. Phytother Res 2014; 28: 1045-1053
  • 50 Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem 2011; 3: 1787-1808
  • 51 Appari M, Babu KR, Kaczorowski A, Gross W, Herr I. Sulforaphane, quercetin, and catechins complement each other in elimination of advanced pancreatic cancer by miR-let-7 induction and K-ras inhibition. Int J Oncol 2014; 45: 1391-1400
  • 52 De Long MJ, Prochaska HJ, Talalay P. Induction of NAD(P)H : quinone reductase in murine hepatoma cells by phenolic antioxidants, azo dyes, and other chemoprotectors: a model system for the study of anticarcinogens. Proc Natl Acad Sci U S A 1986; 83: 787-791
  • 53 Cuendet M, Oteham CP, Moon RC, Pezzuto JM. Quinone reductase induction as a biomarker for cancer chemoprevention. J Nat Prod 2006; 69: 460-463