Rofo 2016; 188(09): 846-852
DOI: 10.1055/s-0042-108859
Abdomen
© Georg Thieme Verlag KG Stuttgart · New York

MRI-Based Liver Iron Content Determination at 3T in Regularly Transfused Patients by Signal Intensity Ratio Using an Alternative Analysis Approach Based on R2* Theory

MRI-basierte Leber-Eisen-Quantifizierung bei 3 T in regelmäßige transfundierten Patienten mittels Signalintensitätsverhältnissen unter Verwendung eines alternativen Ansatzes zur Datenanalyse basierend auf der R2*-Theorie
A. P. Wunderlich
1   Section for experimental Radiology, Universitätsklinikum Ulm, Germany
,
H. Cario
2   Children’s Hospital, Universitätsklinik Ulm, Germany
,
M. Bommer
3   Hematology and Oncology Dept., Alb-Fils-Clinics, Göppingen, Germany
,
M. Beer
4   Dept. for Diagnostic and Interventional Radiology, Universitätsklinikum Ulm, Germany
,
S. A. Schmidt
4   Dept. for Diagnostic and Interventional Radiology, Universitätsklinikum Ulm, Germany
,
M. S. Juchems
5   Diagnostic and Interventional Radiology, Klinikum Konstanz, Konstanz, Germany
› Author Affiliations
Further Information

Publication History

05 November 2015

08 May 2016

Publication Date:
14 June 2016 (online)

Abstract

Objectives: To evaluate the feasibility of addressing liver iron content (LIC) in regularly transfused patients by MR imaging at 3 T based on the signal intensity ratio (SIR). An innovative data analysis approach was developed for this purpose.

Methods: 47 consecutive examinations of regularly transfused patients were included. In all cases, we expected high LIC levels. Patients were scanned with MRI at 3 T with multi-echo gradient echo sequences (GRE) at four different flip angles between 20° and 90° with echo times (TE) ranging from 0.9 to 9.8 ms. Spin-echo protocols were acquired to determine the LIC with a reference MRI method working at 1.5 T. 3 T GRE data were analyzed using the liver-to-muscle SIR. Since the method known for 1.5 T was not expected to be applicable for analyzing 3 T data, theoretic dependence of the SIR on the LIC was derived from the equation describing R2* signal decay. Obtained SIR values were correlated to reference LIC to get a relation for calculating LIC from SIR quantities. LIC values and their uncertainties were determined from GRE data and correlated to LIC reference values. For two LIC thresholds, the diagnostic accuracy was determined.

Results: LIC was reliably determined from SIR in our patient cohort even for large LIC values. Median of LIC uncertainties was 10 %, and the diagnostic accuracy was 0.92 and 0.91, respectively.

Conclusion: Determination of even high LIC, resulting in small SIR values, is feasible at 3 T using appropriate SIR analysis.

Key Points:

• Determination of Liver Iron Concentration (LIC) based on GRE MRI at 3T is feasible even for high LIC levels using Signal Intensiy Ratios.

• Relative uncertainty of LIC determined with 3T GRE MRI was below 13 % in most cases.

• The patient-management relevant threshold (LIC = 80 µmol/g (4.5 mg/g)) yielded an accuracy of .92 in our cohort.

• The proposed method is quick and simple, both in terms of data acquisition and analysis.

Citation Format:

• Wunderlich AP, Cario H, Bommer M et al. MRI-Based Liver Iron Content Determination at 3T in Regularly Transfused Patients by Signal Intensity Ratio Using an Alternative Analysis Approach Based on R2* Theory. Fortschr Röntgenstr 2016; 188: 846 – 852

Zusammenfassung

Ziel: Evaluierung der Möglichkeit, den Leber-Eisengehalt (LIC, von liver iron conentration) regulär transfundierter Patienten mittels MRI-Signalintensitätsverhältnissen (SIR, kurz nach dem engl. Signal Intensity Ratio) bei 3 T zu bestimmen. Hierzu wurde ein neuartiger Ansatz der Datenanalyse erarbeitet.

Methoden: 47 konsekutive Untersuchungen regulär transfundierter Patienten wurden in die Studie eingeschlossen. Bei ihnen wurde ein hoher Lebereisengehalt erwartet. Die Untersuchung erfolgte an einem 3T-MRI-Scanner mit Multi-Echo-Gradienten-Echo-(GRE)-Sequenzen mit vier verschiedenen Flipwinkeln zwischen 20° und 90° mit Echozeiten (TE) von 0,9 bis 9,8 ms. Eine MRI-Methode basierend auf Spin-Echo-Protokollen bei 1,5 T diente als Referenz zur Bestimmung des Leber-Eisengehalts. Für die Analyse der 3T-GRE-Daten wurde das Signal-Intensitätsverhältnis (SIR) zwischen Leber- und Muskelgewebe ermittelt. Da zu erwarten war, dass sich die für 1,5 T bekannte Methode nicht für die Auswertung von 3T-Daten eignete, wurde zur Ermittlung einer passenden Umrechnungsvorschrift der theoretische Zusammenhang zwischen SIR und LIC aus der Formel für den R2*-Signalzerfall abgeleitet. Aus dem Zusammenhang der SIR-Werte mit den LIC-Referenzwerten wurde eine Relation ermittelt, um den LIC und dessen Unsicherheit aus den GRE-Daten zu bestimmen. Diese Ergebnisse wurden mit den LIC-Referenzwerten korreliert und für zwei LIC-Schwellwerte die diagnostische Genauigkeit berechnet.

Ergebnisse: Der LIC konnte in unserem Patientenkollektiv auch für hohe Eisenüberladung verlässlich aus den SIR-Werten bestimmt werden. Der Median der Unsicherheit der ermittelten LIC-Werte lag bei 10 %, die diagnostische Genauigkeit bei 0,92 bzw. 0,91.

Schlussfolgerung: Selbst hohe LIC-Werte, bei denen kleine SIR auftreten, können bei 3 T verlässlich bestimmt werden.

Kernaussagen:

• Bestimmung des Leber-Eisengehalts (LIC, kurz für Liver Iron Conentration) basierend auf GRE MRT bei 3T mittels Signal-Intensitäts-Verhältnissen ist möglich, auch für hohe Leber-Eisen-Werte.

• Die realtive Unsicherheit des mit der vorgeschlagenen Methode bestimmten Leber-Eisengehalts war in den meisten Fällen kleiner als 13 %.

Bei der für das Patienten-Management relevanten LIC-Schwelle von 80 µmol/g (4,5 mg/g) ergab sich für unser Patientenkollektiv eine Genauigkeit von 0,92.

• Die dargestellte Methode ist schnell und einfach, sowohl die Daten-Akquisition als auch die Auswertung.

 
  • References

  • 1 Gandon Y, Olivie D, Guyader D et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004; 363: 357-362
  • 2 Wood JC, Enriquez C, Ghugre N et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106: 1460-1465
  • 3 St Pierre TG, Clark PR, Chua-anusorn W et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005; 105: 855-861
  • 4 Rose C, Vandevenne P, Bourgeois E et al. Liver iron content assessment by routine and simple magnetic resonance imaging procedure in highly transfused patients. European journal of haematology 2006; 77: 145-149
  • 5 Alustiza JM, Artetxe J, Castiella A et al. MR quantification of hepatic iron concentration. Radiology 2004; 230: 479-484
  • 6 Juchems MS, Cario H, Schmid M et al. Liver iron content determined by MRI: spin-echo vs. gradient-echo. Fortschr Röntgenstr 2012; 184: 427-431
  • 7 Peng P, Huang Z, Long L et al. Liver iron quantification by 3 tesla MRI: calibration on a rabbit model. JMRI 2013; 38: 1585-1590
  • 8 Song R, Lin W, Chen Q et al. Relationships between MR transverse relaxation parameters R*(2), R(2) and R'(2) and hepatic iron content in thalassemic mice at 1.5 T and 3 T. NMR in biomedicine 2008; 21: 574-580
  • 9 Meloni A, Positano V, Keilberg P et al. Feasibility, reproducibility, and reliability for the T*2 iron evaluation at 3 T in comparison with 1.5 T. MRM 2012; 68: 543-551
  • 10 Storey P, Thompson AA, Carqueville CL et al. R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. JMRI 2007; 25: 540-547
  • 11 McCarville MB, Hillenbrand CM, Loeffler RB et al. Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload. Pediatric radiology 2010; 40: 1360-1367
  • 12 Hankins JS, McCarville MB, Loeffler RB et al. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009; 113: 4853-4855
  • 13 Virtanen JM, Komu ME, Parkkola RK. Quantitative liver iron measurement by magnetic resonance imaging: in vitro and in vivo assessment of the liver to muscle signal intensity and the R2* methods. Mag res imag 2008; 26: 1175-1182
  • 14 Garbowski MW, Carpenter JP, Smith G et al. Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan. Journal of cardiovascular magnetic resonance 2014; 16: 40
  • 15 Fenzi A, Bortolazzi M, Marzola P. Comparison between signal-to-noise ratio, liver-to-muscle ratio, and 1/T2 for the noninvasive assessment of liver iron content by MRI. JMRI 2003; 17: 589-592
  • 16 Andersen PB, Birgegard G, Nyman R et al. Magnetic resonance imaging in idiopathic hemochromatosis. European journal of haematology 1991; 47: 174-178
  • 17 Wunderlich AP, Cario H, Juchems MS. MRI Approaches for Determination of Liver Iron Content – a Comparison. Proceedings of the 20th ISMRM meeting. Melbourne, Australia: 2012
  • 18 Verlhac S, Morel M, Bernaudin F et al. Liver iron overload assessment by MRI R2* relaxometry in highly transfused pediatric patients: An agreement and reproducibility study. Diagnostic and interventional imaging 2015; 96: 259-264
  • 19 Sarigianni M, Liakos A, Vlachaki E et al. Accuracy of magnetic resonance imaging in diagnosis of liver iron overload: a systematic review and meta-analysis. Clinical gastroenterology and hepatology 2015; 13: 55-63 e55
  • 20 Cario H, Grosse R, Janssen G et al. Guidelines for diagnosis and treatment of secondary iron overload in patients with congenital anemia. Klinische Padiatrie 2010; 222: 399-406
  • 21 Lim RP, Tuvia K, Hajdu CH et al. Quantification of hepatic iron deposition in patients with liver disease: comparison of chemical shift imaging with single-echo T2*-weighted imaging. Am J Roentgenol 2010; 194: 1288-1295
  • 22 Chandarana H, Lim RP, Jensen JH et al. Hepatic iron deposition in patients with liver disease: preliminary experience with breath-hold multiecho T2*-weighted sequence. Am J Roentgenol 2009; 193: 1261-1267
  • 23 Stark DD, Moseley ME, Bacon BR et al. Magnetic resonance imaging and spectroscopy of hepatic iron overload. Radiology 1985; 154: 137-142
  • 24 Hamilton G, Yokoo T, Bydder M et al. In vivo characterization of the liver fat (1)H MR spectrum. NMR in biomedicine 2011; 24: 784-790
  • 25 Hernando D, Kuhn JP, Mensel B et al. R2* estimation using "in-phase" echoes in the presence of fat: the effects of complex spectrum of fat. JMRI 2013; 37: 717-726
  • 26 Hernando D, Kramer JH, Reeder SB. Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation. MRM 2013; 70: 1319-1331
  • 27 Wunderlich AP, Klömpken S, Cario H et al. Signal Intensity ratio between Liver and Muscle Reference in Highly Iron Overloaded Patients: comparing 1.5 T to 3 T. Proceedings of the Joint Annual Meeting ISMRM-ESMRMB. Milan, Italy: 2014
  • 28 Wunderlich AP, Cario H, Juchems MS. Liver Iron Content determined with minimal MR scan time. Proceedings of the 20th ISMRM meeting. Melbourne, Australia: 2012
  • 29 Jensen JH, Tang H, Tosti CL et al. Separate MRI quantification of dispersed (ferritin-like) and aggregated (hemosiderin-like) storage iron. MRM 2010; 63: 1201-1209
  • 30 Berglund J, Kullberg J. Three-dimensional water/fat separation and T2* estimation based on whole-image optimization – application in breathhold liver imaging at 1.5 T. MRM 2012; 67: 1684-1693