Rofo 2016; 188(12): 1123-1133
DOI: 10.1055/s-0042-111075
Review
© Georg Thieme Verlag KG Stuttgart · New York

Management of Intracranial Incidental Findings on Brain MRI

Management intrakranieller Zufallsbefunde in der MRT-Bildgebung
S. Langner
1   Institute for Diagnostic Radiology and Neuroradiology, Universitymedicine Greifswald, Germany
,
R. Buelow
1   Institute for Diagnostic Radiology and Neuroradiology, Universitymedicine Greifswald, Germany
,
S. Fleck
2   Department of Neurosurgery, Universitymedicine Greifswald, Germany
,
A. Angermaier
3   Department of Neurology, Universitymedicine Greifswald, Germany
,
M. Kirsch
1   Institute for Diagnostic Radiology and Neuroradiology, Universitymedicine Greifswald, Germany
› Author Affiliations
Further Information

Publication History

07 February 2016

30 May 2016

Publication Date:
19 July 2016 (online)

Abstract

The wider use of MRI for imaging of the head in both research and clinical practice has led to an increasing number of intracranial incidental findings. Most of these findings have no immediate medical consequences. Nevertheless, knowledge of common intracranial incidental findings and their clinical relevance is necessary to adequately discuss the findings with the patient. Based on the author´s experiences from a large population-based study, the most common incidental MR findings in the brain will be presented, discussing their clinical relevance and giving recommendations for management according to the current literature and guidelines.

Key points:

• Intracranial incidental findings are common.

• The majority of these findings have no immediate medical consequences.

• Knowledge of common incidental findings is necessary for appropriate management.

Citation Format:

• Langner S, Buelow R, Fleck S et al. Management of Intracranial Incidental Findings on Brain MRI. Fortschr Röntgenstr 2016; 188: 1123 – 1133

Zusammenfassung

Durch eine Zunahme von MR-Untersuchungen des Kopfes, sowohl im Rahmen von Studien als auch in der klinischen Routine, kommt es zu einer steigenden Anzahl intrakranieller Zufallsbefunde. Die Mehrzahl dieser Befunde hat keine unmittelbare medizinische Konsequenz. Dennoch sind Kenntnisse über häufige intrakranielle Zufallsbefunde und ihre klinische Relevanz notwendig, um den Befund adäquat mit dem Patienten diskutieren zu können. Basierend auf den eigenen Erfahrungen aus einer populationsbasierten MR-Studie sowie fMRT-Studien werden die häufigsten intrakraniellen Zufallsbefunde in der MRT dargestellt und ihre klinische Relevanz bzw. Empfehlungen zum Management entsprechend der aktuellen Literatur und Leitlinien aufgezeigt.

Deutscher Artikel/German Article

 
  • References

  • 1 Hegenscheid K, Seipel R, Schmidt CO et al. Potentially relevant incidental findings on research whole-body MRI in the general adult population: frequencies and management. European radiology 2013; 23: 816-826
  • 2 Bamberg F, Kauczor HU, Weckbach S et al. Whole-Body MR Imaging in the German National Cohort: Rationale, Design, and Technical Background. Radiology 2015; 277: 206-220
  • 3 Vernooij MW, Ikram MA, Tanghe HL et al. Incidental findings on brain MRI in the general population. The New England journal of medicine 2007; 357: 1821-1828
  • 4 Illes J, Kirschen MP, Edwards E et al. Ethics. Incidental findings in brain imaging research. Science (New York, NY) 2006; 311: 783-784
  • 5 Orme NM, Fletcher JG, Siddiki HA et al. Incidental findings in imaging research: evaluating incidence, benefit, and burden. Archives of internal medicine 2010; 170: 1525-1532
  • 6 Sandeman EM, Hernandez Mdel C, Morris Z et al. Incidental findings on brain MR imaging in older community-dwelling subjects are common but serious medical consequences are rare: a cohort study. PloS one 2013; 8: e71467
  • 7 Schmidt CO, Hegenscheid K, Erdmann P et al. Psychosocial consequences and severity of disclosed incidental findings from whole-body MRI in a general population study. European radiology 2013; 23: 1343-1351
  • 8 Fiehler J. Unruptured brain aneurysms: when to screen and when to treat?. Fortschr Röntgenstr 2012; 184: 97-104
  • 9 Caranci F, Tedeschi E, Leone G et al. Errors in neuroradiology. La Radiologia medica 2015; 120: 795-801
  • 10 Bunnik EM, Vernooij MW. Incidental findings in population imaging revisited. European journal of epidemiology 2016; 31: 1-4
  • 11 Tubbs RS, Krishnamurthy S, Verma K et al. Cavum velum interpositum, cavum septum pellucidum, and cavum vergae: a review. Child's nervous system: ChNS: official journal of the International Society for Pediatric Neurosurgery 2011; 27: 1927-1930
  • 12 Trzesniak C, Oliveira IR, Kempton MJ et al. Are cavum septum pellucidum abnormalities more common in schizophrenia spectrum disorders? A systematic review and meta-analysis. Schizophrenia research 2011; 125: 1-12
  • 13 Kiroglu Y, Karabulut N, Oncel C et al. Cerebral lateral ventricular asymmetry on CT: how much asymmetry is representing pathology?. Surgical and radiologic anatomy 2008; 30: 249-255
  • 14 Tarnaris A, Kitchen ND, Watkins LD. Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging. Journal of neurosurgery 2009; 110: 837-851
  • 15 Eidlitz-Markus T, Zeharia A, Cohen YH et al. Characteristics and management of arachnoid cyst in the pediatric headache clinic setting. Headache 2014; 54: 1583-1590
  • 16 Berhouma M, Ni H, Delabar V et al. Update on the management of pineal cysts: Case series and a review of the literature. Neuro-Chirurgie 2015; 61: 201-207
  • 17 Gur RE, Kaltman D, Melhem ER et al. Incidental findings in youths volunteering for brain MRI research. American journal of neuroradiology 2013; 34: 2021-2025
  • 18 Langner S, Kirsch M. Radiological Diagnosis and Differential Diagnosis of Headache. Fortschr Röntgenstr 2015; 187: 879-891
  • 19 Potter GM, Doubal FN, Jackson CA et al. Enlarged perivascular spaces and cerebral small vessel disease. International journal of stroke: official journal of the International Stroke Society 2015; 10: 376-381
  • 20 Cakir B, Karakas HM, Unlu E et al. Asymptomatic choroid plexus cysts in the lateral ventricles: an incidental finding on diffusion-weighted MRI. Neuroradiology 2002; 44: 830-833
  • 21 Peraud A, Illner A, Rutka JT. Intraventricular congenital lesions and colloid cysts. Neurosurgery clinics of North America 2003; 14: 607-619
  • 22 Ducruet AF, Grobelny BT, Zacharia BE et al. The surgical management of chronic subdural hematoma. Neurosurgical review 2012; 35: 155-169 ; discussion 169
  • 23 Poels MM, Ikram MA, van der Lugt A et al. Incidence of cerebral microbleeds in the general population: the Rotterdam Scan Study. Stroke: a journal of cerebral circulation 2011; 42: 656-661
  • 24 Schrag M, Greer DM. Clinical associations of cerebral microbleeds on magnetic resonance neuroimaging. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association 2014; 23: 2489-2497
  • 25 Mok V, Kim JS. Prevention and Management of Cerebral Small Vessel Disease. Journal of stroke 2015; 17: 111-122
  • 26 Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ (Clinical research ed) 2010; 341: c3666
  • 27 Pantoni L, Fierini F, Poggesi A. Impact of cerebral white matter changes on functionality in older adults: An overview of the LADIS Study results and future directions. Geriatrics & gerontology international 2015; 15: 10-16
  • 28 Dufouil C, Chalmers J, Coskun O et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation 2005; 112: 1644-1650
  • 29 Okuda DT, Mowry EM, Beheshtian A et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology 2009; 72: 800-805
  • 30 Forslin Y, Granberg T, Jumah AA et al. Incidence of Radiologically Isolated Syndrome: A Population-Based Study. American journal of neuroradiology 2016; DOI: 10.3174/ajnr.A4660.
  • 31 Okuda DT, Siva A, Kantarci O et al. Radiologically isolated syndrome: 5-year risk for an initial clinical event. PloS one 2014; 9: e90509
  • 32 Granberg T, Martola J, Kristoffersen-Wiberg M et al. Radiologically isolated syndrome--incidental magnetic resonance imaging findings suggestive of multiple sclerosis, a systematic review. Multiple sclerosis (Houndmills, Basingstoke, England) 2013; 19: 271-280
  • 33 Holmstedt CA, Turan TN, Chimowitz MI. Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. The Lancet Neurology 2013; 12: 1106-1114
  • 34 Zaidat OO, Castonguay AC, Nguyen TN et al. Impact of SAMMPRIS on the future of intracranial atherosclerotic disease management: polling results from the ICAD symposium at the International Stroke Conference. Journal of neurointerventional surgery 2014; 6: 225-230
  • 35 Ryu WS, Park SS, Kim YS et al. Long-term natural history of intracranial arterial stenosis: an MRA follow-up study. Cerebrovascular diseases (Basel, Switzerland) 2014; 38: 290-296
  • 36 Saini M, Suministrado MS, Hilal S et al. Prevalence and Risk Factors of Acute Incidental Infarcts. Stroke: a journal of cerebral circulation 2015; 46: 2722-2727
  • 37 Saini M, Ikram K, Hilal S et al. Silent stroke: not listened to rather than silent. Stroke: a journal of cerebral circulation 2012; 43: 3102-3104
  • 38 Sailer AM, Wagemans BA, Nelemans PJ et al. Diagnosing intracranial aneurysms with MR angiography: systematic review and meta-analysis. Stroke: a journal of cerebral circulation 2014; 45: 119-126
  • 39 Chalouhi N, Dumont AS, Randazzo C et al. Management of incidentally discovered intracranial vascular abnormalities. Neurosurgical focus 2011; 31: E1
  • 40 Deutsche Gesellschaft für Neurologie. AWMF-Leitlinie Unrupturierte intrakranielle Aneurysmen. www.awmf.org/uploads/tx_szleitlinien/030-030l_S1_Unruptierte_intrakranielle_Aneurysmen_2012_verlaengert.pdf
  • 41 Greving JP, Wermer MJ, Brown Jr RD et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. The Lancet Neurology 2014; 13: 59-66
  • 42 Josephson CB, Leach JP, Duncan R et al. Seizure risk from cavernous or arteriovenous malformations: prospective population-based study. Neurology 2011; 76: 1548-1554
  • 43 Ruiz DS, Yilmaz H, Gailloud P. Cerebral developmental venous anomalies: current concepts. Annals of neurology 2009; 66: 271-283
  • 44 Gross BA, Puri AS, Popp AJ et al. Cerebral capillary telangiectasias: a meta-analysis and review of the literature. Neurosurgical review 2013; 36: 187-193 ; discussion 194
  • 45 Barreau X, Marnat G, Gariel F et al. Intracranial arteriovenous malformations. Diagnostic and interventional imaging 2014; 95: 1175-1186
  • 46 Spetzler RF, Ponce FA. A 3-tier classification of cerebral arteriovenous malformations. Clinical article. Journal of neurosurgery 2011; 114: 842-849
  • 47 Mohr JP, Parides MK, Stapf C et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet (London, England) 2014; 383: 614-621
  • 48 Chamoun R, Krisht KM, Couldwell WT. Incidental meningiomas. Neurosurgical focus 2011; 31: E19
  • 49 Shah AH, Madhavan K, Sastry A et al. Managing intracranial incidental findings suggestive of low-grade glioma: learning from experience. World neurosurgery 2013; 80: e75-e77
  • 50 Freda PU, Beckers AM, Katznelson L et al. Pituitary incidentaloma: an endocrine society clinical practice guideline. The Journal of clinical endocrinology and metabolism 2011; 96: 894-904