Aktuelle Kardiologie 2016; 5(04): 282-288
DOI: 10.1055/s-0042-111903
Übersichtsarbeit
Georg Thieme Verlag KG Stuttgart · New York

Kardiale Ionenkanalerkrankungen („Kanalopathien“): aktuelle Daten

Cardiac Ion Channel Diseases (“Channelopathies”): An Update
S. Dittmann
Institut für Genetik von Herzerkrankungen, Universitätsklinikum Münster
,
B. Stallmeyer
Institut für Genetik von Herzerkrankungen, Universitätsklinikum Münster
,
J. Müller
Institut für Genetik von Herzerkrankungen, Universitätsklinikum Münster
,
G. Seebohm
Institut für Genetik von Herzerkrankungen, Universitätsklinikum Münster
,
E. Schulze-Bahr
Institut für Genetik von Herzerkrankungen, Universitätsklinikum Münster
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. August 2016 (online)

Zusammenfassung

Kardiale Ionenkanalerkrankungen gehören zu den seltenen Erkrankungen und sind durch eine Vielzahl von verschiedenen Genotypen geprägt. Für die Diagnose sind molekulargenetische Untersuchungen bedeutsam, da sie eine genauere Klassifizierung erlauben. Im vorliegenden Übersichtsartikel werden aktuelle Ergebnisse von Studien zusammengefasst, die einerseits die Bedeutung von molekulargenetischen Analysen, andererseits die Notwendigkeit von klinischen Langzeitstudien im Bereich der Ionenkanalerkrankungen aufzeigen: Long- und Short-QT-Syndrom (LQTS und SQTS), Brugada-Syndrom (BrS), stressinduzierte, polymorphe Kammertachykardien (CPVT), idiopathisches Kammerflimmern (IVF).

Abstract

Cardiac ion channel diseases are rare diseases and are influenced by a variety of different genotypes. For the diagnosis molecular genetic studies are important because they allow a more precise classification. In the present review recent results of studies are summarized, illustrating the importance of molecular genetic analyses, and the necessity of long-term clinical studies in the field of ion channel diseases: long QT and short QT syndrome (LQTS and SQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and finally idiopathic ventricular fibrillation.

 
  • Literatur

  • 1 Zipes DP, Calkins H, Daubert JP et al. 2015 ACC/AHA/HRS Advanced Training Statement on Clinical Cardiac Electrophysiology (A Revision of the ACC/AHA 2006 Update of the Clinical Competence Statement on Invasive Electrophysiology Studies, Catheter Ablation, and Cardioversion). J Am Coll Cardiol 2015; 66: 2767-2802
  • 2 Schulze-Bahr E, Klaassen S, Abdul-Khaliq H et al. Gendiagnostik bei kardiovaskulären Erkrankungen – Positionspapier der Deutschen Gesellschaft für Kardiologie (DGK) und der Deutschen Gesellschaft für Pädiatrische Kardiologie (DGPK). Kardiologe 2015; 9: 213-243
  • 3 Adler A, Sadek MM, Chan AY et al. Patient Outcomes From a Specialized Inherited Arrhythmia Clinic. Circ Arrhythm Electrophysiol 2016; 9: e003440
  • 4 Yoshinaga M, Kucho Y, Nishibatake M et al. Probability of diagnosing long QT syndrome in children and adolescents according to the criteria of the HRS/EHRA/APHRS expert consensus statement. Eur Heart J 2016; Mar 29; pii: ehw072 [Epub ahead of print] DOI: 10.1093/eurheartj/ehw072.
  • 5 Leren IS, Hasselberg NE, Saberniak J et al. Cardiac Mechanical Alterations and Genotype Specific Differences in Subjects With Long QT Syndrome. JACC Cardiovasc Imaging 2015; 8: 501-510
  • 6 Itoh H, Crotti L, Aiba T et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J 2016; 37: 1456-1464
  • 7 Malan D, Zhang M, Stallmeyer B et al. Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol 2016; 111: 14
  • 8 Mazzanti A, Maragna R, Faragli A et al. Gene-Specific Therapy With Mexiletine Reduces Arrhythmic Events in Patients With Long QT Syndrome Type 3. J Am Coll Cardiol 2016; 67: 1053-1058
  • 9 Dhutia H, Malhotra A, Parpia S et al. The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br J Sports Med 2016; 50: 124-129
  • 10 Villafane J, Atallah J, Gollob MH et al. Long-term follow-up of a pediatric cohort with short QT syndrome. J Am Coll Cardiol 2013; 61: 1183-1191
  • 11 Harrell DT, Ashihara T, Ishikawa T et al. Genotype-dependent differences in age of manifestation and arrhythmia complications in short QT syndrome. Int J Cardiol 2015; 190: 393-402
  • 12 Mazzanti A, Kanthan A, Monteforte N et al. Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol 2014; 63: 1300-1308
  • 13 Curcio A, Mazzanti A, Bloise R et al. Clinical presentation and outcome of Brugada syndrome diagnosed with the new 2013 criteria. J Cardiovasc Electrophysiol 2016; DOI: 10.1111/jce.12997.
  • 14 Sieira J, Conte G, Ciconte G et al. Clinical characterisation and long-term prognosis of women with Brugada syndrome. Heart 2016; 102: 452-458
  • 15 Calo L, Giustetto C, Martino A et al. A New Electrocardiographic Marker of Sudden Death in Brugada Syndrome: The S-Wave in Lead I. J Am Coll Cardiol 2016; 67: 1427-1440
  • 16 Mizusawa Y, Morita H, Adler A et al. Prognostic significance of fever-induced Brugada syndrome. Heart Rhythm 2016; 13: 1515-1520
  • 17 Kapplinger JD, Giudicessi JR, Ye D et al. Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Na(v)1.5 Cardiac Sodium Channel. Circ Cardiovasc Genet 2015; 8: 582-595
  • 18 Sroubek J, Probst V, Mazzanti A et al. Programmed Ventricular Stimulation for Risk Stratification in the Brugada Syndrome: A Pooled Analysis. Circulation 2016; 133: 622-630
  • 19 Gottschalk BH, Anselm DD, Brugada J et al. Expert cardiologists cannot distinguish between Brugada phenocopy and Brugada syndrome electrocardiogram patterns. Europace 2016; 18: 1095-1100
  • 20 Rodriguez-Manero M, Sacher F, de Asmundis C et al. Monomorphic ventricular tachycardia in patients with Brugada syndrome: A multicenter retrospective study. Heart Rhythm 2016; 13: 669-682
  • 21 Nademanee K, Raju H, de Noronha SV et al. Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome. J Am Coll Cardiol 2015; 66: 1976-1986
  • 22 Brugada J, Pappone C, Berruezo A et al. Brugada Syndrome Phenotype Elimination by Epicardial Substrate Ablation. Circ Arrhythm Electrophysiol 2015; 8: 1373-1381
  • 23 Maury P, Sacher F, Gourraud JB et al. Increased Tpeak-Tend interval is highly and independently related to arrhythmic events in Brugada syndrome. Heart Rhythm 2015; 12: 2469-2476
  • 24 Letsas KP, Liu T, Shao Q et al. Meta-Analysis on Risk Stratification of Asymptomatic Individuals With the Brugada Phenotype. Am J Cardiol 2015; 116: 98-103
  • 25 Sieira J, Ciconte G, Conte G et al. Asymptomatic Brugada Syndrome: Clinical Characterization and Long-Term Prognosis. Circ Arrhythm Electrophysiol 2015; 8: 1144-1150
  • 26 Allegue C, Coll M, Mates J et al. Genetic Analysis of Arrhythmogenic Diseases in the Era of NGS: The Complexity of Clinical Decision-Making in Brugada Syndrome. PLoS One 2015; 10: e0133037
  • 27 Le Scouarnec S, Karakachoff M, Gourraud JB et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet 2015; 24: 2757-2763
  • 28 De Ferrari GM, Dusi V, Spazzolini C et al. Clinical Management of Catecholaminergic Polymorphic Ventricular Tachycardia: The Role of Left Cardiac Sympathetic Denervation. Circulation 2015; 131: 2185-2193
  • 29 Tulumen E, Schulze-Bahr E, Zumhagen S et al. Early repolarization pattern: a marker of increased risk in patients with catecholaminergic polymorphic ventricular tachycardia. Europace 2015; Dec 23; pii: euv357 [Epub ahead of print] DOI: 10.1093/europace/euv357.
  • 30 Makita N, Yagihara N, Crotti L et al. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. Circ Cardiovasc Genet 2014; 7: 466-474
  • 31 Santulli G, Pagano G, Sardu C et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J Clin Invest 2015; 125: 4316
  • 32 Campbell MJ, Czosek RJ, Hinton RB et al. Exon 3 deletion of ryanodine receptor causes left ventricular noncompaction, worsening catecholaminergic polymorphic ventricular tachycardia, and sudden cardiac arrest. Am J Med Genet A 2015; 167A: 2197-2200
  • 33 Siebermair J, Sinner MF, Beckmann BM et al. Early repolarization pattern is the strongest predictor of arrhythmia recurrence in patients with idiopathic ventricular fibrillation: results from a single centre long-term follow-up over 20 years. Europace 2016; 18: 718-725
  • 34 Conte G, Caputo ML, Regoli F et al. True idiopathic ventricular fibrillation in out-of-hospital cardiac arrest survivors in the Swiss Canton Ticino: prevalence, clinical features, and long-term follow-up. Europace 2016; Feb 17; pii: euv447 [Epub ahead of print] DOI: 10.1093/europace/euv447.
  • 35 Roten L, Derval N, Maury P et al. Benign vs. malignant inferolateral early repolarization: Focus on the T wave. Heart Rhythm 2016; 13: 894-902
  • 36 Nunn LM, Lopes LR, Syrris P et al. Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing. Europace 2016; 18: 1888-1896
  • 37 Cann F, Corbett M, OʼSullivan D et al. Phenotype Driven Molecular Autopsy for Sudden Cardiac Death. Clin Genet 2016; DOI: 10.1111/cge.12778.
  • 38 Solberg EE, Borjesson M, Sharma S et al. Sudden cardiac arrest in sports – need for uniform registration: a position paper from the Sport Cardiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Prev Cardiol 2016; 23: 657-667