Rofo 2016; 188(11): 1045-1053
DOI: 10.1055/s-0042-115569
Heart
© Georg Thieme Verlag KG Stuttgart · New York

Pneumatic Distension of Ventricular Mural Architecture Validated Histologically

Der pneumatisch gedehnte Herzmuskel im Computertomogramm und im histologischen Bild
M. C. Burg
1   Department of Clinical Radiology, University Hospital Münster, Germany
,
P. Lunkenheimer
2   Dept. of Experimental Thoraco-vascular Surgery, University Hospital Münster, Germany
,
P. Niederer
3   Institute for Biomedical Engineering, ETH and University of Zürich, Switzerland
,
C. Brune
4   Department of Applied Mathematics, University of Twente, Netherlands
,
K. Redmann
5   Center for Reproductive Medicine and Andrology, University Hospital Münster, Germany
,
M. Smerup
6   Dept of Cardiothoracic and Vascular Surgery, Skejby Sygehus, Aarhus University Hospital, Aarhus, Denmark
,
U. Spiegel
7   Dept. Surgical Research, Clinic of General and Visceral Surgery, University Hospital Münster, Germany
,
F. Becker
7   Dept. Surgical Research, Clinic of General and Visceral Surgery, University Hospital Münster, Germany
,
D. Maintz
1   Department of Clinical Radiology, University Hospital Münster, Germany
8   Department of Radiology, University of Cologne, Germany
,
W. Heindel
1   Department of Clinical Radiology, University Hospital Münster, Germany
,
R. H. Anderson
9   Institute of Genetic Medicine, Newcastle University, London, United Kingdom of Great Britain and Northern Ireland
› Author Affiliations
Further Information

Publication History

24 June 2015

11 August 2016

Publication Date:
19 October 2016 (online)

Abstract

Purpose: There are ongoing arguments as to how cardiomyocytes are aggregated together within the ventricular walls. We used pneumatic distension through the coronary arteries to exaggerate the gaps between the aggregated cardiomyocytes, analyzing the pattern revealed using computed tomography, and validating our findings by histology.

Methods: We distended 10 porcine hearts, arresting 4 in diastole by infusion of cardioplegic solutions, and 4 in systole by injection of barium chloride. Mural architecture was revealed by computed tomography, measuring also the angulations of the long chains of cardiomyocytes. We prepared the remaining 2 hearts for histology by perfusion with formaldehyde.

Results: Increasing pressures of pneumatic distension elongated the ventricular walls, but produced insignificant changes in mural thickness. The distension exaggerated the spaces between the aggregated cardiomyocytes, compartmenting the walls into epicardial, central, and endocardial regions, with a feathered arrangement of transitions between them. Marked variation was noted in the thicknesses of the parts in the different ventricular segments, with no visible anatomical boundaries between them. Measurements of angulations revealed intruding and extruding populations of cardiomyocytes that deviated from a surface-parallel alignment. Scrolling through the stacks of tomographic images revealed marked spiraling of the aggregated cardiomyocytes when traced from base to apex.

Conclusion: Our findings call into question the current assumption that cardiomyocytes are uniformly aggregated together in a tangential fashion. There is marked heterogeneity in the architecture of the different ventricular segments, with the aggregated units never extending in a fully transmural fashion.

Key Points:

• Pneumographic computed tomography reveals an organized structure of the ventricular walls.

• Aggregated cardiomyocytes form a structured continuum, with marked regional heterogeneity.

• Global ventricular function results from antagonistic forces generated by aggregated cardiomyocytes.

Citation Format:

• Burg MC, Lunkenheimer P, Niederer P et al. Pneumatic Distension of Ventricular Mural Architecture Validated Histologically. Fortschr Röntgenstr 2016; 188: 1045 – 1053

Zusammenfassung

Ziel: Um den Aufbau der linksventrikulären Kammerwände radiologisch zu analysieren, haben wir sie pneumatisch über die Koronararterien gedehnt, sodass Spalträume zwischen den Myokardblöcken entstehen. Das in der Computertomografie dargestellte Muster wurde anschließend histologisch validiert.

Material und Methoden: 10 Schweineherzen wurden gebläht, nachdem 4 durch Infusion kardioplegischer Lösung in Diastole fixiert und 4 durch Bariumchlorid in Systole stillgestellt worden waren. Der lamelläre Aufbau der Wände wurde computertomografisch dargestellt. Die Helixdrehung langer Myozytenketten wurde bestimmt. 2 weitere Herzen wurden histologisch aufgearbeitet.

Ergebnisse: Steigende Blähdrücke führten zu einer Verlängerung der Wände ohne signifikante Zunahme der Wanddicke. Nach Blähung des Interstitiums zwischen den lamellären Myokardblöcken trennen sich optisch eine subepikardiale, eine zentrale und eine subendokardiale Region durch ihre unterschiedlich angeordnete Fiederung. Über die Kammerwände herrscht eine ausgeprägte Variation der Dicke dieser Regionen. Es bestehen keine bindegewebigen Grenzen zwischen ihnen. Die Muskelblöcke weichen unterschiedlich stark von einer oberflächenparallelen Anordnung ab. Beim Scrollen durch den Myokardkörper von der Basis zum Apex stellt sich eine spiralige Vernetzung der Myokardblöcke dar.

Schlussfolgerung: Nach interstitieller Blähung bestätigt sich für die Struktur des Herzmuskels nicht die Annahme seiner einheitlichen tangentialen Anordnung. Es besteht regional eine ausgeprägte Heterogenität. Lamelläre Aggregate erstrecken sich niemals vollständig transmural. Ihre nicht allein tangentiale Anordnung legt das Vorherrschen eines antagonistischen Wechselspieles von entlastenden und auxotonen Kräften nahe.

Kernaussaugen:

• Die Computertomografie des pneumatisch gedehnten Myokards zeigt eine organisierte Struktur der Ventrikelwände.

• Kardiomyozyten sind zu einem hoch strukturierten Kontinuum mit ausgeprägter regionaler Heterogenität verknüpft.

• Die globale Herzfunktion ist das Ergebnis der Kräfte von Blöcken aggregierter Kardiomyozyten.

 
  • References

  • 1 Lower R (ed) Tractatus de corde item de motu & colore sanguinis et chyli in eum transitu. Amstelodami: Elzevir; 1669
  • 2 Achenbach S, Barkhausen J, Beer M et al. Consensus recommendations of the german radiology society (DRG), the german cardiac society (DGK) and the german society for pediatric cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Fortschr Röntgenstr 2012; DOI: 10.1055/s-0031-1299400.
  • 3 Helm P, Beg MF, Miller MI et al. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann N Y Acad Sci 2005; DOI: 1047/1/296. [pii]
  • 4 Chen J, Liu W, Zhang H et al. Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: Quantification with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 2005; DOI: 289/5/H1898. [pii]
  • 5 Dou J, Tseng WY, Reese TG et al. Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magn Reson Med 2003; DOI: 10.1002/mrm.10482. [doi]
  • 6 Streeter D, Bassett D. An engineering analysis of myocardial fiber orientation in pig's left ventricle in systole. Anat Rec 1966; 155: 503-511
  • 7 LeGrice IJ, Takayama Y, Covell JW. Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 1995; 77: 182-193
  • 8 Feneis H. Das Gefüge des Herzmuskels bei Systole und Diastole. Gegenbauers Morphologisches Jahrbuch 1944/45. 89: 406-471
  • 9 Hort W. Macroscopic and micrometric research on the myocardium of the left ventricle filled to varying degrees. Virchows Arch Pathol Anat Physiol Klin Med 1960; 333: 523-564
  • 10 Frank O. Isometrie und Isotonie des Herzmuskels. Z Biol 1901; 41: 14-34
  • 11 Lunkenheimer PP, Redmann K, Florek J et al. The forces generated within the musculature of the left ventricular wall. Heart 2004; 90: 200-207
  • 12 Lunkenheimer PP, Redmann K, Kling N et al. Three-dimensional architecture of the left ventricular myocardium. Anat Rec A Discov Mol Cell Evol Biol 2006; DOI: 10.1002/ar.a.20326. [doi]
  • 13 Anderson RH, Ho SY, Sanchez-Quintana D et al. Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes. Anat Rec A Discov Mol Cell Evol Biol 2006; DOI: 10.1002/ar.a.20330. [doi]
  • 14 Caulfield JB, Borg TK. The collagen network of the heart. Lab Invest 1979; 40: 364-372
  • 15 Lunkenheimer PP, Muller RP, Konermann C et al. Architecture of the myocardium in computed tomography. Invest Radiol 1984; 19: 273-278
  • 16 Brune C, Sawatzky A, Burger M. Primal and dual bregman methods with application to optical nanoscopy. Int J Comput Vis 2011; 92: 211-229
  • 17 Edwards WD, Tajik AJ, Seward JB. Standardized nomenclature and anatomic basis for regional tomographic analysis of the heart. Mayo Clin Proc 1981; 56: 479-497
  • 18 Krehl L. Beiträge zur Kenntnis der Füllung und Entleerung des Herzens. Abhandlungen der math-physischen Classe d Königl Sächs Ges Wiss 1891; 17: 341-383
  • 19 Spotnitz HM, Spotnitz WD, Cottrell TS et al. Cellular basis for volume related wall thickness changes in the rat left ventricle. J Mol Cell Cardiol 1974; DOI: 0022-2828(74)90074-1. [pii]
  • 20 Lunkenheimer PP, Niederer P. Hierarchy and inhomogeneity in the systematic structure of the mammalian myocardium: Towards a comprehensive view of cardiodynamics. Technol Health Care 2012; DOI: 10.3233/THC-2012-0690. [doi]
  • 21 Henk E, ter KeursJ, Waldmann L et al. Wall thickening, shears, and cleavage planes. In: Ingels J, Daughters G, Baan J, Covell J, Renemann R, Yin F, (eds) Systolic and diastolic Function of the Heart. IOS Press and Ohmsha; 1995: 345-362
  • 22 Schmid P, Lunkenheimer PP, Redmann K et al. Statistical analysis of the angle of intrusion of porcine ventricular myocytes from epicardium to endocardium using diffusion tensor magnetic resonance imaging. Anat Rec (Hoboken) 2007; DOI: 10.1002/ar.20604. [doi]
  • 23 Machler H, Reiter G, Perthel M et al. Influence of a tilting prosthetic mitral valve orientation on the left ventricular flow – an experimental in vivo magnetic resonance imaging study. Eur J Cardiothorac Surg 2007; DOI: S1010-7940(07)00267-9. [pii]
  • 24 Bettendorff-Bakman DE, Schmid P, Lunkenheimer PP et al. Diastolic ventricular aspiration: A mechanism supporting the rapid filling phase of the human ventricles. J Theor Biol 2008; DOI: S0022-5193(07)00539-5. [pii]
  • 25 Torrent-Guasp F, Kocica MJ, Corno AF et al. Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg 2005; DOI: S1010-7940(04)00913-3. [pii]
  • 26 Buckberg GD, Hoffman JI, Coghlan HC et al. Ventricular structure-function relations in health and disease: Part I. the normal heart. Eur J Cardiothorac Surg 2015; DOI: 10.1093/ejcts/ezu278. [doi]
  • 27 Dorri F, Niederer PF, Redmann K et al. An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle. Eur J Cardiothorac Surg 2007; DOI: S1010-7940(06)01087-6. [pii]
  • 28 Schmitt B, Li T, Kutty S et al. Effects of incremental beta blocker dosing on myocardial mechanics of the human left ventricle: MRI 3D-tagging insight into pharmacodynamics. Am J Physiol Heart Circ Physiol 2015; DOI: 10.1152/ajpheart.00746.2014. [doi]
  • 29 Nensa F, Schlosser T. Cardiovascular hybrid imaging using PET/MRI. Fortschr Röntgenstr 2014; DOI: 10.1055/s-0034-1385009. [doi]