Klin Monbl Augenheilkd 2018; 235(01): 47-57
DOI: 10.1055/s-0042-116073
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Papillendiagnostik mithilfe der optischen Kohärenztomografie

Optic Nerve Head Diagnostics with Optical Coherence Tomography
J. D. Unterlauft
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Leipzig AöR
,
H. Tegetmeyer
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Leipzig AöR
› Author Affiliations
Further Information

Publication History

eingereicht 11 July 2016

akzeptiert 24 August 2016

Publication Date:
27 September 2016 (online)

Zusammenfassung

Hintergrund: Die Untersuchung des Sehnervenkopfs mit der optischen Kohärenztomografie (OCT) ist beim kooperativen Patienten schnell und einfach durchzuführen und erleichtert die Erkennung und Verlaufskontrolle verschiedener pathologischer Veränderungen der Papille deutlich.

Material und Methoden: Anhand von Beispielen sollen Möglichkeiten und typische Befunde der OCT-Untersuchung der Papille dargestellt werden, um die Erkennung auch seltener Erkrankungen des Sehnervs zu vereinfachen und korrekte Therapieentscheidungen fundiert treffen zu können.

Ergebnisse: Pathologische Veränderungen an der Papille und typische Papillen-OCT-Befunde bei Glaukom, bei verschiedenen Papillenanomalien, bei nicht glaukomatös bedingten Optikusatrophien und bei Papillenschwellungen unterschiedlicher Genese werden beschrieben. Darüber hinaus werden diejenigen OCT-Parameter und Untersuchungsmodalitäten dargestellt, mithilfe derer sich die jeweiligen Krankheitsbilder am einfachsten durch den Untersucher erkennen lassen.

Schlussfolgerung: Die Untersuchung der Papille mittels OCT ermöglicht eine schnelle Diagnostik auch seltener und ophthalmoskopisch schwierig zu erkennender Pathologien des Sehnervenkopfs und genaueste Verlaufsuntersuchungen chronisch-progredienter Erkrankungen. Mithilfe der OCT-Untersuchung der Papille können bei richtiger Anwendung und Auswertung die richtigen Diagnosen korrekt gestellt werden und wichtige Therapieentscheidungen deutlich vereinfacht werden.

Abstract

Background: With a cooperative patient, examination of the optic nerve head using optical coherence tomography (OCT) is fast and easy to perform and facilitates identification and monitoring of different pathological changes in the optic nerve head.

Materials and Methods: Characteristic findings and scanning options are illustrated using case examples to simplify recognition of infrequent diseases of the optic nerve head and to facilitate treatment decisions using OCT results.

Results: Pathological changes and characteristic OCT findings are shown for glaucoma, for different anomalies of the optic nerve head, for non-glaucomatous optic atrophies and for optic disc swelling for different reasons. The most suitable OCT parameters and examination modes are listed to differentiate between specific pathological changes.

Conclusion: Optic nerve head examination using the OCT facilitates rapid diagnosis of infrequent and hard to distinguish pathological changes, as well as exact monitoring of chronic progressive diseases of the optic nerve. Correct application and evaluation of results gathered using OCT examination of the optic nerve head facilitates accurate diagnosis and correct decisions.

 
  • Literatur

  • 1 Lang GE. [Ophthalmoscopy in the era of optical coherence tomography]. Ophthalmologe 2015; 112: 791-801
  • 2 Mardin CY. [Principles of glaucoma diagnostics with optical coherence tomography]. Ophthalmologe 2015; 112: 639-645
  • 3 Brinkmann CK. [Reliable recognition of glaucoma by spectral domain optical coherence tomography?]. Ophthalmologe 2015; 112: 654-660
  • 4 Garway-Heath DF, Poinoosawmy D, Fitzke FW et al. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 2000; 107: 1809-1815
  • 5 Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2008; 146: 496-500
  • 6 Potsaid B, Baumann B, Huang D et al. Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt Express 2010; 18: 20029-20048
  • 7 Nilforushan N, Nassiri N, Moghimi S et al. Structure-function relationships between spectral-domain OCT and standard achromatic perimetry. Invest Ophthalmol Vis Sci 2012; 53: 2740-2748
  • 8 Park HY, Park CK. Structure-function relationship and diagnostic value of RNFL Area Index compared with circumpapillary RNFL thickness by spectral-domain OCT. J Glaucoma 2013; 22: 88-97
  • 9 Na JH, Lee KS, Lee JR et al. The glaucoma detection capability of spectral-domain OCT and GDx-VCC deviation maps in early glaucoma patients with localized visual field defects. Graefes Arch Clin Exp Ophthalmol 2013; 251: 2371-2382
  • 10 Wollstein G, Schuman JS, Price LL et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004; 138: 218-225
  • 11 Dolman CL, McCormick AQ, Drance SM. Aging of the optic nerve. Arch Ophthalmol 1980; 98: 2053-2058
  • 12 Balazsi AG, Rootman J, Drance SM et al. The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol 1984; 97: 760-766
  • 13 Parikh RS, Parikh SR, Sekhar GC et al. Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology 2007; 114: 921-926
  • 14 Reis AS, OʼLeary N, Yang H et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci 2012; 53: 1852-1860
  • 15 Schargus M, Gramer E. [Optic disc drusen]. Ophthalmologe 2008; 105: 693-710
  • 16 Sato T, Mrejen S, Spaide RF. Multimodal imaging of optic disc drusen. Am J Ophthalmol 2013; 156: 275-282.e1
  • 17 Merchant KY, Su D, Park SC et al. Enhanced depth imaging optical coherence tomography of optic nerve head drusen. Ophthalmology 2013; 120: 1409-1414
  • 18 Roy R, Waanbah AD, Mathur G et al. Optical coherence tomography characteristics in eyes with optic pit maculopathy. Retina 2013; 33: 771-775
  • 19 Ohno-Matsui K, Hirakata A, Inoue M et al. Evaluation of congenital optic disc pits and optic disc colobomas by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2013; 54: 7769-7778
  • 20 Ceynowa DJ, Wickstrom R, Olsson M et al. Morning glory disc anomaly in childhood – a population-based study. Acta Ophthalmol 2015; 93: 626-634
  • 21 Lee KM, Woo SJ, Hwang JM. Evaluation of congenital excavated optic disc anomalies with spectral-domain and swept-source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1853-1860
  • 22 Jonas JB, Gusek GC, Naumann GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci 1988; 29: 1151-1158
  • 23 Flores-Rodriguez P, Gili P, Martin-Rios MD et al. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects. Ophthalmic Physiol Opt 2013; 33: 164-171
  • 24 Shi W, Wang HZ, Song WX et al. Axonal loss and blood flow disturbances in the natural course of indirect traumatic optic neuropathy. Chin Med J (Engl) 2013; 126: 1292-1297
  • 25 Votruba M. Molecular genetic basis of primary inherited optic neuropathies. Eye (Lond) 2004; 18: 1126-1132
  • 26 Barboni P, Savini G, Valentino ML et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leberʼs hereditary optic neuropathy. Ophthalmology 2005; 112: 120-126
  • 27 Balducci N, Savini G, Cascavilla ML et al. Macular nerve fibre and ganglion cell layer changes in acute Leberʼs hereditary optic neuropathy. Br J Ophthalmol 2016; 100: 1232-1237
  • 28 Mashima Y, Kimura I, Yamamoto Y et al. Optic disc excavation in the atrophic stage of Leberʼs hereditary optic neuropathy: comparison with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2003; 241: 75-80
  • 29 Barboni P, Carbonelli M, Savini G et al. Natural history of Leberʼs hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 2010; 117: 623-627
  • 30 Ramos Cdo V, Bellusci C, Savini G et al. Association of optic disc size with development and prognosis of Leberʼs hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2009; 50: 1666-1674
  • 31 Park HH, Oh MC, Kim EH et al. Use of optical coherence tomography to predict visual outcome in parachiasmal meningioma. J Neurosurg 2015; 123: 1489-1499
  • 32 Barboni P, Savini G, Parisi V et al. Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age. Ophthalmology 2011; 118: 2076-2080
  • 33 Yu-Wai-Man P, Bailie M, Atawan A et al. Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye (Lond) 2011; 25: 596-602
  • 34 Barboni P, Savini G, Cascavilla ML et al. Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation. Am J Ophthalmol 2014; 158: 628-636.e3
  • 35 Costello F, Coupland S, Hodge W et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59: 963-969
  • 36 Danesh-Meyer HV, Wong A, Papchenko T et al. Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 2015; 22: 1098-1104
  • 37 Park SW, Hwang JM. Optical coherence tomography shows early loss of the inferior temporal quadrant retinal nerve fiber layer in autosomal dominant optic atrophy. Graefes Arch Clin Exp Ophthalmol 2015; 253: 135-141
  • 38 Avery RA, Cnaan A, Schuman JS et al. Longitudinal change of circumpapillary retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol 2015; 160: 944-952.e1
  • 39 Tegetmeyer H. [Application of optical coherence tomography in paediatric neuroophthalmology]. Klin Monatsbl Augenheilkd 2011; 228: 868-873
  • 40 Hoyt WF, Rios-Montenegro EN, Behrens MM et al. Homonymous hemioptic hypoplasia. Fundoscopic features in standard and red-free illumination in three patients with congenital hemiplegia. Br J Ophthalmol 1972; 56: 537-545
  • 41 Jindahra P, Petrie A, Plant GT. Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain 2009; 132: 628-634
  • 42 Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain 2012; 135: 534-541
  • 43 Wang JK, Kardon RH, Kupersmith MJ et al. Automated quantification of volumetric optic disc swelling in papilledema using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 4069-4075
  • 44 Kardon R. Optical coherence tomography in papilledema: what am I missing?. J Neuroophthalmol 2014; 34: S10-S17
  • 45 Kulkarni KM, Pasol J, Rosa PR et al. Differentiating mild papilledema and buried optic nerve head drusen using spectral domain optical coherence tomography. Ophthalmology 2014; 121: 959-963
  • 46 Aggarwal D, Tan O, Huang D et al. Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53: 4539-4545
  • 47 Larrea BA, Iztueta MG, Indart LM et al. Early axonal damage detection by ganglion cell complex analysis with optical coherence tomography in nonarteritic anterior ischaemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2014; 252: 1839-1846
  • 48 Noval S, Contreras I, Munoz S et al. Optical coherence tomography in multiple sclerosis and neuromyelitis optica: an update. Mult Scler Int 2011; 2011: 472790
  • 49 Garas A, Simo M, Hollo G. Nerve fiber layer and macular thinning measured with different imaging methods during the course of acute optic neuritis. Eur J Ophthalmol 2011; 21: 473-483
  • 50 Houle E, Miller NR. Bilateral vitreopapillary traction demonstrated by optical coherence tomography mistaken for papilledema. Case Rep Ophthalmol Med 2012; 2012: 682659