CC BY 4.0 · TH Open 2022; 06(01): e70-e79
DOI: 10.1055/s-0042-1744185
Original Article

COVID-19 Induced Coagulopathy (CIC): Thrombotic Manifestations of Viral Infection

Swati Sharma
1   Deptartment of Biotechnology, Jamia Millia Islamia, New Delhi, India
,
Aastha Mishra
2   CSIR-Institute of Genomics and Integrative Biology, Delhi, India
,
Zahid Ashraf
1   Deptartment of Biotechnology, Jamia Millia Islamia, New Delhi, India
› Author Affiliations
Funding Ministry of Ayush, Government of India: S-14013/2018.

Abstract

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may result in an overactive coagulative system, thereby resulting in serious cardiovascular consequences in critically affected patients. The respiratory tract is a primary target for COVID-19 infection, which is manifested as acute lung injury in the most severe form of the viral infection, leading to respiratory failure. A proportion of infected patients may progress to serious systemic disease including dysfunction of multiple organs, acute respiratory distress syndrome (ARDS), and coagulation abnormalities, all of which are associated with increased mortality, additionally depending on age and compromised immunity. Coagulation abnormalities associated with COVID-19 mimic other systemic coagulopathies otherwise involved in other severe infections, such as disseminated intravascular coagulation (DIC) and may be termed COVID-19 induced coagulopathy (CIC). There is substantial evidence that patients with severe COVID-19 exhibiting CIC can develop venous and arterial thromboembolic complications. In the initial stages of CIC, significant elevation of D-dimer and fibrin/fibrinogen degradation products is observed. Alteration in prothrombin time, activated partial thromboplastin time, and platelet counts are less common in the early phase of the disease. In patients admitted to intensive care units (ICUs), coagulation test screening involving the measurement of D-dimer and fibrinogen levels, has been recommended. Prior established protocols for thromboembolic prophylaxis are also followed for CIC, including the use of heparin and other standard supportive care measures. In the present review, we summarize the characteristics of CIC and its implications for thrombosis, clinical findings of coagulation parameters in SARS-CoV-2 infected patients with incidences of thromboembolic events and plausible therapeutic measures.



Publication History

Received: 29 October 2021

Accepted: 18 November 2021

Article published online:
10 March 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Huang C, Wang Y, Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497-506
  • 2 World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation report - 46. (Accessed on March 12 2020) Online: https://www.who.int/docs/default-source/coronaviruse/situationreports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2
  • 3 Xiong TY, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J 2020; 41 (19) 1798-1800
  • 4 Zhu N, Zhang D, Wang W. et al; China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med 2020; 382 (08) 727-733 DOI: 10.1056/NEJMoa2001017.
  • 5 Cucinotta D, Vanelli M. WHO declares COVID-19 a Pandemic. Acta Biomed 2020; 91 (01) 157-160 DOI: 10.23750/abm.v91i1.93973.
  • 6 Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020; 181 (02) 281-292.e6
  • 7 Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46 (04) 586-590
  • 8 van Doremalen N, Bushmaker T, Morris DH. et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med 2020; 382 (16) 1564-1567
  • 9 Zhou P, Yang XL, Wang XG. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 (7798): 270-273
  • 10 Wang D, Hu B, Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan,. China: JAMA; 2020
  • 11 Guan WJ, Ni ZY, Hu Y. et al; China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382 (18) 1708-1720
  • 12 Driggin E, Madhavan MV, Bikdeli B. et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. J Am Coll Cardiol 2020; ;12;75 (18) 2352-2371
  • 13 Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol 2020; 5 (07) 831-840
  • 14 Levi M, Iba T. COVID-19 coagulopathy: is it disseminated intravascular coagulation?. Intern Emerg Med 2021; 16 (02) 309-312 DOI: 10.1007/s11739-020-02601-y.
  • 15 Chen N, Zhou M, Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395 (10223): 507-513
  • 16 Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18 (04) 844-847
  • 17 Shi S, Qin M, Shen B. et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol 2020; 5 (07) 802-810 [ epub ahead of print ] DOI: 10.1001/jamacardio.2020.0950.
  • 18 Fan BE, Chong VCL, Chan SSW. et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 2020
  • 19 Lew TW, Kwek TK, Tai D. et al. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA 2003; 290 (03) 374-380
  • 20 https://covid19.who.int/
  • 21 Yang J, Zheng Y, Gou X. et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-95 DOI: 10.1016/j.ijid.2020.03.017.
  • 22 Zhou F, Yu T, Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054-1062
  • 23 Wu C, Chen X, Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180 (07) 934-943
  • 24 Boonyawat K, Chantrathammachart P, Numthavaj P. et al. Incidence of thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Thromb J 2020; 18 (01) 34 DOI: 10.1186/s12959-020-00248-5.
  • 25 Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA. et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost 2020; 18 (06) 1517-1519
  • 26 Klok FA, Kruip MJHA, van der Meer NJM. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-147
  • 27 Llitjos JF, Leclerc M, Chochois C. et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost 2020; 18 (07) 1743-1746
  • 28 Middeldorp S, Coppens M, van Haaps TF. et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020; 18 (08) 1995-2002
  • 29 Marone EM, Rinaldi LF. Upsurge of deep venous thrombosis in patients affected by COVID-19: Preliminary data and possible explanations. J Vasc Surg Venous Lymphat Disord 2020; 8 (04) 694-695
  • 30 Wichmann D, Sperhake JP, Lütgehetmann M. et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med 2020; 173 (04) 268-277
  • 31 Zhang L, Feng X, Zhang D. et al. Deep Vein Thrombosis in Hospitalized Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan. China: Prevalence, Risk Factors, and Outcome. Circulation; 2020
  • 32 Ren B, Yan F, Deng Z. et al. Extremely High Incidence of Lower Extremity Deep Venous Thrombosis in 48 Patients With Severe COVID-19 in Wuhan. Circulation 2020; 142 (02) 181-183
  • 33 Stoneham SM, Milne KM, Nuttall E. et al. Thrombotic risk in COVID-19: a case series and case-control study. Clin Med (Lond) 2020; 20 (04) e76-e81
  • 34 Voicu S, Bonnin P, Stépanian A. et al. High prevalence of deep vein thrombosisin mechanically ventilated COVID-19 patients. J Am Coll Cardiol 2020; 76 (04) 480-482
  • 35 Desborough MJR, Doyle AJ, Griffiths A, Retter A, Breen KA, Hunt BJ. Image-proven thromboembolism in patients with severe COVID-19 in a tertiary critical care unit in the United Kingdom. Thromb Res 2020; 193: 1-4
  • 36 Fraissé M, Logre E, Pajot O, Mentec H, Plantefève G, Contou D. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Crit Care 2020; 24 (01) 275
  • 37 Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20 (06) 363-374 DOI: 10.1038/s41577-020-0311-8.
  • 38 Moreno-Eutimio MA, López-Macías C, Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect 2020; 22 (4-5): 226-229 DOI: 10.1016/j.micinf.2020.04.009.
  • 39 Varga Z, Flammer AJ, Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395 (10234): 1417-1418 DOI: 10.1016/S0140-6736(20)30937-5.
  • 40 Crackower MA, Sarao R, Oudit GY. et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002; 417 (6891): 822-828 DOI: 10.1038/nature00786.
  • 41 Danilczyk U, Penninger JM. Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 2006; 98 (04) 463-471 DOI: 10.1161/01.RES.0000205761.22353.5f.
  • 42 Kayal S, Jaïs JP, Aguini N, Chaudière J, Labrousse J. Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 1998; 157 (3 Pt 1): 776-784 DOI: 10.1164/ajrccm.157.3.9705034.
  • 43 Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101 (10) 3765-3777 DOI: 10.1182/blood-2002-06-1887.
  • 44 Ward SE, Fogarty H, Karampini E. et al; Irish COVID-19 Vasculopathy Study (iCVS) investigators. ADAMTS13 regulation of VWF multimer distribution in severe COVID-19. J Thromb Haemost 2021; 19 (08) 1914-1921 DOI: 10.1111/jth.15409.
  • 45 Mancini I, Baronciani L, Artoni A. et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J Thromb Haemost 2021; 19 (02) 513-521 DOI: 10.1111/jth.15191.
  • 46 Massberg S, Enders G, Leiderer R. et al. Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood 1998; 92 (02) 507-515
  • 47 Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76 (02) 301-314 DOI: 10.1016/0092-8674(94)90337-9.
  • 48 Monteil V, Kwon H, Prado P. et al. is Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020; 181 (04) 905-913.e7 DOI: 10.1016/j.cell.2020.04.004.
  • 49 Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin Chim Acta 2020; 506: 145-148 DOI: 10.1016/j.cca.2020.03.022.
  • 50 Yang X, Yang Q, Wang Y. et al. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost 2020; 18 (06) 1469-1472 DOI: 10.1111/jth.14848.
  • 51 Cañas CA, Cañas F, Bautista-Vargas M, Bonilla-Abadía F. Role of Tissue Factor in the Pathogenesis of COVID-19 and the Possible Ways to Inhibit It. Clin Appl Thromb Hemost 2021;27:10760296211003983. Doi: 10.1177/10760296211003983
  • 52 Hottz ED, Azevedo-Quintanilha IG, Palhinha L. et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020; 136 (11) 1330-1341 Google Scholar | Crossref | Medline
  • 53 Rosell A, Havervall S, von Meijenfeldt F. et al. Patients With COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated With Severity and Mortality-Brief Report. Arterioscler Thromb Vasc Biol 2021; 41 (02) 878-882
  • 54 Bhagat S, Biswas I, Ahmed R, Khan GA. Hypoxia induced up-regulation of tissue factor is mediated through extracellular RNA activated Toll-like receptor 3-activated protein 1 signalling. Blood Cells Mol Dis 2020; 84: 102459
  • 55 Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 2012; 3: 87
  • 56 Tang WH, Stitham J, Gleim S. et al. Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane. J Clin Invest 2011; 121 (11) 4462-4476
  • 57 Tang WH, Stitham J, Jin Y. et al. Aldose reductase-mediated phosphorylation of p53 leads to mitochondrial dysfunction and damage in diabetic platelets. Circulation 2014; 129 (15) 1598-1609
  • 58 Sinauridze EI, Kireev DA, Popenko NY. et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97 (03) 425-434
  • 59 Ackermann M, Verleden SE, Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 2020; 383 (02) 120-128
  • 60 Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol 2020; 153 (06) 725-733
  • 61 is Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med 2020; 8 (07) 681-686
  • 62 Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 2018; 122 (02) 337-351 DOI: 10.1161/CIRCRESAHA.117.310795.
  • 63 Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol 2014; 5: 649 DOI: 10.3389/fimmu.2014.00649.
  • 64 Koupenova M, Corkrey HA, Vitseva O. et al. The role of platelets in mediating a response to human influenza infection. Nat Commun 2019; 10 (01) 1780 DOI: 10.1038/s41467-019-09607-x.
  • 65 Koupenova M, Vitseva O, MacKay CR. et al. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014; 124 (05) 791-802 DOI: 10.1182/blood-2013-11-536003.
  • 66 Fitch- Tewfik JL, Flaumenhaft R. Platelet granuleexocytosis: a comparison with chromaffin cells. Front Endocrinol 2013; 4: 77
  • 67 Sut C, Tariket S, Aubron C. et al. The non- hemostatic aspects of transfused platelets. Front Med (Lausanne) 2018; 5: 42
  • 68 Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect 2020; 80 (06) 607-613
  • 69 Hottz ED, Lopes JF, Freitas C. et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 2013; 122 (20) 3405-3414
  • 70 Middleton EA, He XY, Denorme F. et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136 (10) 1169-1179
  • 71 Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev 2007; 21 (02) 99-111
  • 72 Wang T, Chen R, Liu C. et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol 2020; 7 (05) e362-e363
  • 73 Cognasse F, Hamzeh-Cognasse H, Lafarge S. et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol 2007; 35 (09) 1376-1387 DOI: 10.1016/j.exphem.2007.05.021.
  • 74 Favaloro EJ, Henry BM, Lippi G. Is Lupus Anticoagulant a Significant Feature of COVID-19? A Critical Appraisal of the Literature. Semin Thromb Hemost 2022; 48 (01) 55-71
  • 75 Helms J, Tacquard C, Severac F. et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020; 46 (06) 1089-1098 DOI: 10.1007/s00134-020-06062-.
  • 76 Pulivarthi S, Gurram MK. Effectiveness of d-dimer as a screening test for venous thromboembolism: an update. N Am J Med Sci 2014; 6 (10) 491-499
  • 77 Palareti G, Cosmi B, Legnani C. et al; DULCIS (D-dimer and ULtrasonography in Combination Italian Study) Investigators. D-dimer to guide the duration of anticoagulation in patients with venous thromboembolism: a management study. Blood 2014; 124 (02) 196-203
  • 78 Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18 (05) 1094-1099 DOI: 10.1111/jth.14817.
  • 79 Ranucci M, Ballotta A, Di Dedda U. et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost 2020; 18 (07) 1747-1751
  • 80 Bikdeli B, Madhavan MV, Jimenez D. et al; Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC State-of-the-art review. J Am Coll Cardiol 2020; 75 (23) 2950-2973 DOI: 10.1016/j.jacc.2020.04.031.
  • 81 Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135 (23) 2033-2040 DOI: 10.1182/blood.2020006000.
  • 82 Wool GD, Miller JL. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology 2021; 88 (01) 15-27 DOI: 10.1159/000512007.
  • 83 Arnold K, Xu Y, Sparkenbaugh EM. et al. Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Sci Transl Med 2020; 12 (535) eaav8075 DOI: 10.1126/scitranslmed.aav8075.
  • 84 Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: Do heparins have direct anti-inflammatory effects?. Thromb Haemost 2017; 117 (03) 437-444 DOI: 10.1160/TH16-08-0620.
  • 85 Mycroft-West C, Su D, Elli S. et al. The 2019 coronavirus (SARS-cov-2) surfaceprotein (spike) s1 receptor binding domain undergoes conformational change upon heparin binding. bioRxiv 2020:2020.2002.2029.971093
  • 86 Riker RR, May TL, Fraser GL, Gagnon DJ, Bandara M, Zemrak W. SederDB. Heparin-induced thrombocytopenia with thrombosis in covid-19 adult respiratory distress syndrome. Research and Practice in Thrombosis and Haemostasis. n/a
  • 87 Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131 (17) 1903-1909 DOI: 10.1182/blood-2017-04-569111.
  • 88 Renné T, Stavrou EX. Roles of factor XII in innate immunity. Front Immunol 2019; 10: 2011 DOI: 10.3389/fimmu.2019.02011.
  • 89 Larsson M, Rayzman V, Nolte MW. et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med 2014; 6 (222) 222ra17 DOI: 10.1126/scitranslmed.3006804.
  • 90 Renné T, Schmaier AH, Nickel KF, Blombäck M, Maas C. In vivo roles of factor XII. Blood 2012; 120 (22) 4296-4303 DOI: 10.1182/blood-2012-07-292094.
  • 91 Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. J Thromb Haemost 2020; 18 (07) 1548-1555 DOI: 10.1111/jth.14872.
  • 92 Wang J, Hajizadeh N, Moore EE. et al. Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost 2020; 18 (07) 1752-1755 DOI: 10.1111/jth.14828.
  • 93 Liu C, Ma Y, Su Z. et al. Meta-analysis of preclinical studies of fibrinolytic therapy for acute lung injury. Front Immunol 2018; 9: 1898 DOI: 10.3389/fimmu.2018.01898.
  • 94 Hardaway RM, Harke H, Tyroch AH, Williams CH, Vazquez Y, Krause GF. Treatment of severe acute respiratory distress syndrome: a final report on a phase I study. Am Surg 2001; 67 (04) 377-382
  • 95 Ouyang Y, Wang Y, Liu B, Ma X, Ding R. Effects of antiplatelet therapy on the mortality rate of patients with sepsis: A meta-analysis. J Crit Care 2019; 50: 162-168 DOI: 10.1016/j.jcrc.2018.12.004.
  • 96 Carestia A, Davis RP, Grosjean H, Lau MW, Jenne CN. Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood 2020; 135 (15) 1281-1286 DOI: 10.1182/blood.2019002783.
  • 97 Liu X, Li Z, Liu S. et al. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm Sin B 2020; 10 (07) 1205-1215 DOI: 10.1016/j.apsb.2020.04.008.