CC BY-NC-ND 4.0 · Revista Urología Colombiana / Colombian Urology Journal 2022; 31(02): e73-e81
DOI: 10.1055/s-0042-1744253
Original Article | Artículo Original
Urology Oncology - Prostate Cancer / Urología Oncológica - Cáncer de Próstata

Metabolomic Profile in Patients with Malignant Disturbances of the Prostate: An Experimental Approach

Perfil metabolómico en pacientes con alteraciones malignas de la próstata: Un enfoque experimental
1   Division of Urology/Uro-oncology, Department of Surgery, UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
2   Department of Chemistry, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali, Colombia
3   Department of Chemistry, Faculty of Natural and Exact Sciences, DARMN Research Group, Universidad del Valle, Cali, Colombia
4   Department of Physiological Sciences, LABIOMOL Research Group, School of Basic Sciences, Universidad del Valle, Cali, Colombia
› Author Affiliations
Funding This work was supported by the Colombian Ministry of Science, Technology and Innovation RC. No. 873-2019 Project code: 1106-844-67709


Purpose To identify metabolites in humans that can be associated with the presence of malignant disturbances of the prostate.

Methods In the present study, we selected male patients aged between 46 and 82 years who were considered at risk of prostate cancer due to elevated levels of prostate-specific antigen (PSA) or abnormal results on the digital rectal examination. All selected patients came from two university hospitals (Hospital Universitario del Valle and Clínica Rafael Uribe Uribe) and were divided into 2 groups: cancer (12 patients) and non-cancer (20 patients). Cancer was confirmed by histology, and none of the patients underwent any previous treatment. Standard protocols were applied to all the collected blood samples. The resulting plasma samples were kept at -80°C, and a profile of each one was acquired by nuclear magnetic resonance (NMR) using established experiments. Multivariate analyses were applied to this dataset, first to establish the quality of the data and identify outliers, and then, to model the data.

Results We included 12 patients with cancer and 20 without it. Two patients were excluded due to contamination with ethanol. The remaining ones were used to build an Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) model (including 15 non-cancer and 10 cancer patients), with acceptable discrimination (Q2 = 0.33). This model highlighted the role of lactate and lipids, with a positive association of these two metabolites and prostate cancer.

Conclusions The primary discriminative metabolites between patients with and without prostate cancer were lactate and lipids. These might be the most reliable biomarkers to trace the development of cancer in the prostate.


Objetivo Identificar metabolitos en humanos que pueden estar asociados con la presencia de alteraciones malignas de la próstata.

Métodos Se incluyeron muestras de pacientes masculinos entre 46 y 82 años y que se consideraron en riesgo de cáncer de próstata debido a la elevación del antígeno prostático específico (PSA) o el examen rectal anormal. Todos los pacientes seleccionados procedían de dos hospitales universitarios (Hospital Universitario del Valle y Clínica Rafael Uribe Uribe) y se dividieron en dos grupos: Oncológicos (12) vs no oncológicos (20). El cáncer fue confirmado por histología, y ninguno de ellos recibió tratamiento previo. Se aplicaron protocolos estándar a todas las muestras de sangre recolectadas. Las muestras de plasma resultantes se mantuvieron a −80°C y se adquirió un perfil de cada muestra mediante RMN. Se aplicaron análisis multivariantes a este conjunto de datos, primero para establecer la calidad de los datos e identificar valores atípicos, y para modelar los datos.

Resultados Se incluyeron 12 pacientes con cáncer y 20 pacientes sin cáncer. Dos pacientes fueron excluidos por contaminación con etanol. Los restantes se utilizaron para construir un modelo OPLS-DA (15 pacientes no oncológicos y diez oncológicos), con una discriminación aceptable (Q2 = 0,33). Este modelo destacó el papel del lactato y los lípidos, encontrando una asociación positiva entre estos dos metabolitos y el cáncer de próstata.

Conclusiones Los principales metabolitos discriminativos entre pacientes con cáncer de próstata versus no cáncer fueron el lactato y los lípidos. Estos podrían ser los biomarcadores más confiables para rastrear el desarrollo del cáncer en la próstata.

Publication History

Received: 09 September 2021

Accepted: 20 January 2022

Article published online:
21 June 2022

© 2022. Sociedad Colombiana de Urología. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

  • References

  • 1 Wu X, Gu J. Heritability of prostate cancer: a tale of rare variants and common single nucleotide polymorphisms. Ann Transl Med 2016; 4 (10) 206-209
  • 2 Packer JR, Maitland NJ. The molecular and cellular origin of human prostate cancer. Biochim Biophys Acta 2016; 1863 (6 Pt A): 1238-1260
  • 3 Rand KA, Rohland N, Tandon A. et al; African Ancestry Prostate Cancer GWAS Consortium, ELLIPSE/GAME-ON Consortium. Whole-exome sequencing of over 4100 men of African ancestry and prostate cancer risk. Hum Mol Genet 2016; 25 (02) 371-381
  • 4 Mottet (Chair) N, Bellmunt J, Briers (Patient Representative) E, Bolla M, Cornford (Vice-chair) P, De Santis M. et al. Guidelines on Prostate Cancer [Internet]. Vol. 53. European Association of Urology; 2017. . Available from:
  • 5 Wang Z-Y, Li H-Y, Jiang Z, Zhou T-B, Drummen GPC. GSTM1 Gene Polymorphism is Implicated in Increased Susceptibility to Prostate Cancer in Caucasians and Asians. Technol Cancer Res Treat 2016; 15 (06) NP69-NP78
  • 6 Helfand BT, Kearns J, Conran C, Xu J. Clinical validity and utility of genetic risk scores in prostate cancer. Asian J Androl 2016; 18 (04) 509-514
  • 7 Dimitriadis E, Kalogeropoulos T, Velaeti S. et al. Study of genetic and epigenetic alterations in urine samples as diagnostic markers for prostate cancer. Anticancer Res 2013; 33 (01) 191-197
  • 8 Leyten GH, Hessels D, Jannink SA. et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur Urol 2014; 65 (03) 534-542
  • 9 Salami SS, Schmidt F, Laxman B. et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol 2013; 31 (05) 566-571
  • 10 Ilic D, Neuberger MM, Djulbegovic M, Dahm P. Screening for prostate cancer. Cochrane Database Syst Rev 2013; 1 (01) CD004720
  • 11 Kelly RS, Vander Heiden MG, Giovannucci E, Mucci LA. Metabolomic biomarkers of prostate cancer: Prediction, diagnosis, progression, prognosis, and recurrence. Cancer Epidemiol Biomarkers Prev 2016; 25 (06) 887-906
  • 12 Hsing AW, Sakoda LC, Chua Jr S. Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr 2007; 86 (03) s843-s857
  • 13 Spratlin JL, Serkova NJ, Eckhardt SG. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 2009; 15 (02) 431-440
  • 14 Sreekumar A, Poisson LM, Rajendiran TM. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 2009; 457 (7231): 910-914
  • 15 Cheng LL, Burns MA, Taylor JL. et al. Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res 2005; 65 (08) 3030-3034
  • 16 Lokhov PG, Dashtiev MI, Moshkovskii SA, Archakov AI. Metabolite profiling of blood plasma of patients with prostate cancer. Metabolomics 2010; 6 (01) 156-163
  • 17 Serkova NJ, Gamito EJ, Jones RH. et al. The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate 2008; 68 (06) 620-628
  • 18 Osl M, Dreiseitl S, Pfeifer B. et al. A new rule-based algorithm for identifying metabolic markers in prostate cancer using tandem mass spectrometry. Bioinformatics 2008; 24 (24) 2908-2914
  • 19 Miyagi Y, Higashiyama M, Gochi A. et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One 2011; 6 (09) e24143 [Internet]
  • 20 Zang X, Jones CM, Long TQ. et al. Feasibility of detecting prostate cancer by ultraperformance liquid chromatography-mass spectrometry serum metabolomics. J Proteome Res 2014; 13 (07) 3444-3454
  • 21 Struck-Lewicka W, Kordalewska M, Bujak R. et al. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study. J Pharm Biomed Anal 2015; 111: 351-361
  • 22 Pearce JTM, Athersuch TJ, Ebbels TMD, Lindon JC, Nicholson JK, Keun HC. Robust algorithms for automated chemical shift calibration of 1D 1H NMR spectra of blood serum. Anal Chem 2008; 80 (18) 7158-7162
  • 23 R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2017. . Available from:
  • 24 Barton RH, Waterman D, Bonner FW. et al; Procardis Consortium. The influence of EDTA and citrate anticoagulant addition to human plasma on information recovery from NMR-based metabolic profiling studies. Mol Biosyst 2010; 6 (01) 215-224
  • 25 Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 2008; 134 (05) 703-707
  • 26 Lima AR, Bastos Mde L, Carvalho M, Guedes de Pinho P. Biomarker discovery in human prostate cancer: An update in metabolomics studies. Transl Oncol 2016; 9 (04) 357-370 DOI: 10.1016/j.tranon.2016.05.004.
  • 27 Gonzalez-Menendez P, Hevia D, Mayo J, Sainz R. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas?. Int J Cancer 2018; 142 (12) 2414-2424
  • 28 Vaz CV, Alves MG, Marques R. et al. Androgen-responsive and nonresponsive prostate cancer cells present a distinct glycolytic metabolism profile. Int J Biochem Cell Biol 2012; 44 (11) 2077-2084
  • 29 Kumar D, Gupta A, Mandhani A, Sankhwar SN. Metabolomics-derived prostate cancer biomarkers: fact or fiction?. J Proteome Res 2015; 14 (03) 1455-1464
  • 30 Giskeødegård GF, Hansen AF, Bertilsson H. et al. Metabolic markers in blood can separate prostate cancer from benign prostatic hyperplasia. Br J Cancer 2015; 113 (12) 1712-1719
  • 31 Johansson M, Van Guelpen B, Vollset SE. et al. One-carbon metabolism and prostate cancer risk: prospective investigation of seven circulating B vitamins and metabolites. Cancer Epidemiol Biomarkers Prev 2009; 18 (05) 1538-1543
  • 32 Crowe FL, Allen NE, Appleby PN. et al. Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2008; 88 (05) 1353-1363
  • 33 Saylor PJ, Karoly ED, Smith MR. Prospective study of changes in the metabolomic profiles of men during their first three months of androgen deprivation therapy for prostate cancer. Clin Cancer Res 2012; 18 (13) 3677-3685
  • 34 Kdadra M, Höckner S, Leung H, Kremer W, Schiffer E. Metabolomics Biomarkers of Prostate Cancer: A Systematic Review. Diagnostics (Basel) 2019; 9 (01) E21
  • 35 Eidelman E, Twum-Ampofo J, Ansari J, Siddiqui MM. The metabolic phenotype of prostate cancer. Front Oncol 2017; 7 (JUN): 131
  • 36 Andersen MK, Giskeødegård GF, Tessem MB. Metabolic alterations in tissues and biofluids of patients with prostate cancer. Curr Opin Endocr Metab Res 2020; 10: 23-28
  • 37 Dudka I, Thysell E, Lundquist K. et al. Comprehensive metabolomics analysis of prostate cancer tissue in relation to tumor aggressiveness and TMPRSS2-ERG fusion status. BMC Cancer 2020; 20 (01) 437-453