CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2022; 09(02): 075-083
DOI: 10.1055/s-0042-1744399
Review Article

A Narrative Review on Translational Research in Acute Brain Injury

Charu Mahajan
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
,
Indu Kapoor
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
,
Hemanshu Prabhakar
1   Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
› Institutsangaben

Abstract

There has been a constant endeavor to reduce the mortality and morbidity associated with acute brain injury. The associated complex mechanisms involving biomechanics, markers, and neuroprotective drugs/measures have been extensively studied in preclinical studies with an ultimate aim to improve the patients' outcomes. Despite such efforts, only few have been successfully translated into clinical practice. In this review, we shall be discussing the major hurdles in the translation of preclinical results into clinical practice. The need is to choose an appropriate animal model, keeping in mind the species, age, and gender of the animal, choosing suitable outcome measures, ensuring quality of animal trials, and carrying out systematic review and meta-analysis of experimental studies before proceeding to human trials. The interdisciplinary collaboration between the preclinical and clinical scientists will help to design better, meaningful trials which might help a long way in successful translation. Although challenging at this stage, the advent of translational precision medicine will help the integration of mechanism-centric translational medicine and patient-centric precision medicine.



Publikationsverlauf

Artikel online veröffentlicht:
05. Mai 2022

© 2022. Indian Society of Neuroanaesthesiology and Critical Care. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Cohrs RJ, Martin T, Ghahramani P, Bidaut L, Higgins PJ, Shahzad A. Translational medicine definition by the European Society for Translational Medicine. New Horiz Transl Med 2015; 2: 86-88
  • 2 Waldman SA, Terzic A. Clinical and translational science: from bench-bedside to global village. Clin Transl Sci 2010; 3 (05) 254-257
  • 3 Cinelli P, Rauen K, Halvazishadeh S, Pape HC. Translational research: what is the value of experimental studies in comparison with clinical studies to help understand clinical problems. Eur J Trauma Emerg Surg 2018; 44: 645-647
  • 4 Hall ED. Translational principles of neuroprotective and neurorestorative therapy testing in animal models of traumatic brain injury. In: Laskowitz D, Grant G. eds. Translational Research in Traumatic Brain Injury. Boca Raton, FL: CRC20 Press/Taylor and Francis Group; 2016. . Chapter 11. Available at: https://www.ncbi.nlm.nih.gov/books/NBK326712/
  • 5 Armstead WM, Vavilala MS. Improving understanding and outcomes of traumatic brain injury using bidirectional translational research. J Neurotrauma 2020; 37 (22) 2372-2380
  • 6 Duhaime AC, Raghupathi R. Age-specific therapy for traumatic injury of the immature brain: experimental approaches. Exp Toxicol Pathol 1999; 51 (02) 172-177
  • 7 Hawthorne C, Piper I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol 2014; 5: 121
  • 8 Zeiler FA, Donnelly J, Calviello L. et al. Validation of pressure reactivity and pulse amplitude indices against the lower limit of autoregulation. Part 1: experimental intracranial hypertension. J Neurotrauma 2018; 35 (23) 2803-2811
  • 9 Zeiler FA, Lee JK, Smielewski P, Czosnyka M, Brady K. Validation of intracranial pressure derived cerebrovascular reactivity indices against the lower limit of autoregulation. Part II: experimental model of arterial hypotension. J Neurotrauma 2018; 35 (23) 2812-2819
  • 10 Donnelly J, Czosnyka M, Adams H. et al. Pressure reactivity-based optimal cerebral perfusion pressure in a traumatic brain injury cohort. Acta Neurochir Suppl (Wien) 2018; 126: 209-212
  • 11 Kramer AH, Couillard PL, Zygun DA, Aries MJ, Gallagher CN. Continuous assessment of “optimal” cerebral perfusion pressure in traumatic brain injury: a cohort study of feasibility, reliability and relation to outcome. Neurocrit Care 2019; 30 (01) 51-61
  • 12 Armstead WM, Vavilala MS. Translational approach towards determining the role of cerebral autoregulation in outcome after traumatic brain injury. Exp Neurol 2019; 317: 291-297
  • 13 Curvello V, Hekierski H, Pastor P, Vavilala MS, Armstead WM. Dopamine protects cerebral autoregulation and prevents hippocampal necrosis after traumatic brain injury via block of ERK MAPK in juvenile pigs. Brain Res 2017; 1670: 118-124
  • 14 Marks JA, Li S, Gong W. et al. Similar effects of hypertonic saline and mannitol on the inflammation of the blood-brain barrier microcirculation after brain injury in a mouse model. J Trauma Acute Care Surg 2012; 73 (02) 351-357
  • 15 Kumasaka K, Marks JA, Eisenstadt R. et al. In vivo leukocyte-mediated brain microcirculatory inflammation: a comparison of osmotherapies and progesterone in severe traumatic brain injury. Am J Surg 2014; 208 (06) 961-968
  • 16 Schwimmbeck F, Voellger B, Chappell D, Eberhart L. Hypertonic saline versus mannitol for traumatic brain injury: a systematic review and meta-analysis with trial sequential analysis. J Neurosurg Anesthesiol 2021; 33 (01) 10-20
  • 17 Gu J, Huang H, Huang Y, Sun H, Xu H. Hypertonic saline or mannitol for treating elevated intracranial pressure in traumatic brain injury: a meta-analysis of randomized controlled trials. Neurosurg Rev 2019; 42 (02) 499-509
  • 18 Chen H, Song Z, Dennis JA. Hypertonic saline versus other intracranial pressure-lowering agents for people with acute traumatic brain injury. Cochrane Database Syst Rev 2020; 1 (01) CD010904
  • 19 Fukuda AM, Adami A, Pop V. et al. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. J Cereb Blood Flow Metab 2013; 33 (10) 1621-1632
  • 20 Qi L, Cui X, Dong W. et al. Ghrelin protects rats against traumatic brain injury and hemorrhagic shock through upregulation of UCP2. Ann Surg 2014; 260 (01) 169-178
  • 21 Shao X, Hu Q, Chen S, Wang Q, Xu P, Jiang X. Ghrelin ameliorates traumatic brain injury by down regulating bFGF and FGF-BP. Front Neurosci 2018; 12: 445
  • 22 Lv Q, Fan X, Xu G. et al. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res 2013; 1493: 80-89
  • 23 Tian L, Guo R, Yue X. et al. Intranasal administration of nerve growth factor ameliorate β-amyloid deposition after traumatic brain injury in rats. Brain Res 2012; 1440: 47-55
  • 24 Clinical Trials.gov [Internet]. NCT01212679. Effects of intranasal nerve growth factor for traumatic brain injury. Jinling Hospital, China;: 2010 . Accessed November 28, 2021 at: https://clinicaltrials.gov/ct2/show/NCT01212679
  • 25 Chiaretti A, Conti G, Falsini B. et al. Intranasal nerve growth factor administration improves cerebral functions in a child with severe traumatic brain injury: a case report. Brain Inj 2017; 31 (11) 1538-1547
  • 26 Wright DW, Kellermann AL, Hertzberg VS. et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 2007; 49 (04) 391-402
  • 27 Skolnick BE, Maas AI, Narayan RK. et al; SYNAPSE Trial Investigators. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med 2014; 371 (26) 2467-2476
  • 28 Wright DW, Yeatts SD, Silbergleit R. et al; NETT Investigators. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 2014; 371 (26) 2457-2466
  • 29 Stein DG. Embracing failure: what the Phase III progesterone studies can teach about TBI clinical trials. Brain Inj 2015; 29 (11) 1259-1272
  • 30 Norris J. $17m DoD award aims to improve clinical trials for traumatic brain injury. San Francisco, CA:: University of California San Francisco;; 2014 . Accessed September 22, 2020 at: https://www.universityofcalifornia.edu/news/17m-award-aims-improve-clinical-trials-traumatic-brain-injury
  • 31 Olah E, Poto L, Hegyi P. et al. Therapeutic whole body hypothermia reduces death in severe Traumatic brain injury if the cooling index is sufficiently high: meta-analysis of the effect of single cooling parameters and their integrated measure. J Neurotrauma 2018; 35 (20) 2407-2417
  • 32 Gu X, Wei ZZ, Espinera A. et al. Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats. Exp Neurol 2015; 267: 135-142
  • 33 Bhatti J, Nascimento B, Akhtar U. et al. Systematic review of human and animal studies examining the efficacy and safety of N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) in traumatic brain injury: impact on neurofunctional outcome and biomarkers of oxidative stress and inflammation. Front Neurol 2018; 8: 744
  • 34 Clark RSB, Empey PE, Bayır H. et al. Phase I randomized clinical trial of N-acetylcysteine in combination with an adjuvant probenecid for treatment of severe traumatic brain injury in children. PLoS One 2017; 12 (07) e0180280
  • 35 Chang J, Phelan M, Cummings BJ. A meta-analysis of efficacy in pre-clinical human stem cell therapies for traumatic brain injury. Exp Neurol 2015; 273: 225-233
  • 36 Heile AM, Wallrapp C, Klinge PM. et al. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 2009; 463 (03) 176-181
  • 37 Fisher M, Feuerstein G, Howells DW. et al; STAIR Group. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009; 40 (06) 2244-2250
  • 38 Kahle MP, Bix GJ. Successfully climbing the “STAIRs”: surmounting failed translation of experimental ischemic stroke treatments. Stroke Res Treat 2012; 2012: 374098
  • 39 Lo EH. 2013 Thomas Willis Award Lecture: causation and collaboration for stroke research. Stroke 2014; 45 (01) 305-308
  • 40 Ritskes-Hoitinga M, Leenaars M, Avey M, Rovers M, Scholten R. Systematic reviews of preclinical animal studies can make significant contributions to health care and more transparent translational medicine. Cochrane Database Syst Rev 2014; 28 (03) ED000078
  • 41 Bosetti F, Koenig JI, Ayata C. et al. Translational stroke research: vision and opportunities. Stroke 2017; 48 (09) 2632-2637
  • 42 Archer DP, Walker AM, McCann SK, Moser JJ, Appireddy RM. Anesthetic neuroprotection in experimental stroke in rodents: a systematic review and metaanalysis. Anesthesiology 2017; 126 (04) 653-665
  • 43 Pan Y, Jing J, Chen W. et al; CHANCE investigators. Risks and benefits of clopidogrel-aspirin in minor stroke or TIA: time course analysis of CHANCE. Neurology 2017; 88 (20) 1906-1911
  • 44 Xu J, Wang A, Wangqin R. et al; CHANCE investigators. Efficacy of clopidogrel for stroke depends on CYP2C19 genotype and risk profile. Ann Neurol 2019; 86 (03) 419-426
  • 45 Meschia JF, Walton RL, Farrugia LP. et al. Efficacy of clopidogrel for prevention of stroke based on CYP2C19 allele status in the POINT trial. Stroke 2020; 51 (07) 2058-2065
  • 46 Smith CJ, Hulme S, Vail A. et al. SCIL-STROKE (subcutaneous interleukin-1 receptor antagonist in ischemic stroke): a randomized controlled phase 2 trial. Stroke 2018; 49 (05) 1210-1216
  • 47 Kohler E, Prentice DA, Bates TR. et al. Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke 2013; 44 (09) 2493-2499
  • 48 Elkins J, Veltkamp R, Montaner J. et al. Safety and efficacy of natalizumab in patients with acute ischaemic stroke (ACTION): a randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol 2017; 16 (03) 217-226
  • 49 Elkind MSV, Veltkamp R, Montaner J. et al. Natalizumab in acute ischemic stroke (ACTION II): a randomized, placebo-controlled trial. Neurology 2020; 95 (08) e1091-e1104
  • 50 Hemmen TM, Raman R, Guluma KZ. et al; ICTuS-L Investigators. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): final results. Stroke 2010; 41 (10) 2265-2270
  • 51 Lyden P, Hemmen T, Grotta J. et al; Collaborators. Results of the ICTuS 2 trial (intravascular cooling in the treatment of stroke 2). Stroke 2016; 47 (12) 2888-2895
  • 52 van der Worp HB, Macleod MR, Bath PM. et al; EuroHYP-1 investigators. Therapeutic hypothermia for acute ischaemic stroke. Results of a European multicentre, randomised, phase III clinical trial. Eur Stroke J 2019; 4 (03) 254-262
  • 53 Kuczynski AM, Marzoughi S, Al Sultan AS. et al. Therapeutic hypothermia in acute ischemic stroke-a systematic review and meta-analysis. Curr Neurol Neurosci Rep 2020; 20 (05) 13
  • 54 Alexandrov AV, Köhrmann M, Soinne L. et al; CLOTBUST-ER Trial Investigators. Safety and efficacy of sonothrombolysis for acute ischaemic stroke: a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Neurol 2019; 18 (04) 338-347
  • 55 Zhu Z, Zhong C, Guo D. et al. Multiple biomarkers covering several pathways improve predictive ability for cognitive impairment among ischemic stroke patients with elevated blood pressure. Atherosclerosis 2019; 287: 30-37
  • 56 England TJ, Hedstrom A, O'Sullivan S. et al. RECAST (remote ischemic conditioning after stroke trial): a pilot randomized placebo controlled phase ii trial in acute ischemic stroke. Stroke 2017; 48 (05) 1412-1415
  • 57 Landman T, Schoon Y, Warlé M, De Leeuw FE, Thijssen D. The effect of repeated remote ischemic postconditioning on infarct size in patients with an ischemic stroke (REPOST): study protocol for a randomized clinical trial. Trials 2019; 20 (01) 167
  • 58 Prasad K, Sharma A, Garg A. et al; InveST Study Group. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke 2014; 45 (12) 3618-3624
  • 59 Savitz SI, Yavagal D, Rappard G. et al. A phase 2 randomized, sham-controlled trial of internal carotid artery infusion of autologous bone marrow-derived ALD-401 cells in patients with recent stable ischemic stroke (RECOVER-stroke). Circulation 2019; 139 (02) 192-205
  • 60 Leclerc JL, Garcia JM, Diller MA. et al. A comparison of pathophysiology in humans and rodent models of subarachnoid hemorrhage. Front Mol Neurosci 2018; 11: 71
  • 61 Grüter BE, Croci D, Schöpf S. et al. Systematic review and meta-analysis of methodological quality in in vivo animal studies of subarachnoid hemorrhage. Transl Stroke Res 2020; 11 (06) 1175-1184
  • 62 Conzen C, Becker K, Albanna W. et al. The acute phase of experimental subarachnoid hemorrhage: intracranial pressure dynamics and their effect on cerebral blood flow and autoregulation. Transl Stroke Res 2019; 10 (05) 566-582
  • 63 Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 2013; 4 (04) 432-446
  • 64 Qi W, Cao D, Li Y. et al. Atorvastatin ameliorates early brain injury through inhibition of apoptosis and ER stress in a rat model of subarachnoid hemorrhage. Biosci Rep 2018; 38 (03) BSR20171035
  • 65 Li JR, Xu HZ, Nie S. et al. Fluoxetine-enhanced autophagy ameliorates early brain injury via inhibition of NLRP3 inflammasome activation following subrachnoid hemorrhage in rats. J Neuroinflammation 2017; 14 (01) 186
  • 66 Liu W, Li R, Yin J. et al. Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch. J Neuroinflammation 2019; 16 (01) 8
  • 67 Oka F, Chung DY, Suzuki M, Ayata C. Delayed cerebral ischemia after subarachnoid hemorrhage: experimental-clinical disconnect and the unmet need. Neurocrit Care 2020; 32 (01) 238-251
  • 68 Nakatsuka Y, Shiba M, Nishikawa H. et al; pSEED group. Acute-phase plasma osteopontin as an independent predictor for poor outcome after aneurysmal subarachnoid hemorrhage. Mol Neurobiol 2018; 55 (08) 6841-6849
  • 69 Suzuki H, Hasegawa Y, Ayer R. et al. Effects of recombinant osteopontin on blood-brain barrier disruption after subarachnoid hemorrhage in rats. Acta Neurochir Suppl (Wien) 2011; 111: 231-236
  • 70 Chou SH, Macdonald RL, Keller E. Unruptured Intracranial Aneurysms and SAH CDE Project Investigators. Biospecimens and molecular and cellular biomarkers in aneurysmal subarachnoid hemorrhage studies: common data elements and standard reporting recommendations. Neurocrit Care 2019; 30 (Suppl 1): 46-59
  • 71 Bayerl SH, Ghori A, Nieminen-Kelhä M. et al. In vitro and in vivo testing of a novel local nicardipine delivery system to the brain: a preclinical study. J Neurosurg 2019; 132 (02) 465-472
  • 72 Carlson AP, Hänggi D, Wong GK. et al; NEWTON Investigators. Single-dose intraventricular nimodipine microparticles versus oral nimodipine for aneurysmal subarachnoid hemorrhage. Stroke 2020; 51 (04) 1142-1149
  • 73 Goulay R, Flament J, Gauberti M. et al. Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke 2017; 48 (08) 2301-2305
  • 74 Gaberel T, Gakuba C, Fournel F. et al. FIVHeMA: intraventricular fibrinolysis versus external ventricular drainage alone in aneurysmal subarachnoid hemorrhage: a randomized controlled trial. Neurochirurgie 2019; 65 (01) 14-19
  • 75 De Maria Marchiano R, Di Sante G, Piro G. et al. Translational research in the era of precision medicine: where we are and where we will go. J Pers Med 2021; 11 (03) 216
  • 76 Hartl D, de Luca V, Kostikova A. et al. Translational precision medicine: an industry perspective. J Transl Med 2021; 19 (01) 245