CC BY-NC-ND 4.0 · Int Arch Otorhinolaryngol 2022; 26(04): e730-e737
DOI: 10.1055/s-0042-1748533
Original Research

Wideband Acoustic Absorbance in Otosclerosis: Does Stapedotomy Restore Normal Tympanic Cavity Function?*

1   Faculty of Speech-Language Pathology and Audiology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
,
Polyana Cristiane Nascimento
1   Faculty of Speech-Language Pathology and Audiology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
,
Katia de Almeida
1   Faculty of Speech-Language Pathology and Audiology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
,
Thamyris Rosati Servilha
2   Department of Otorhinolaryngology, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil
,
Gil Junqueira Marçal
2   Department of Otorhinolaryngology, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP, Brazil
,
Osmar Mesquita de Sousa Neto
3   Department of Otorhinolaryngology, Escola de Ciências Médicas da Santa Casa de São Paulo. R. Dr. Cesário Mota Júnior, São Paulo, SP, Brazil
› Author Affiliations
Financial Support FAPESP 2014/15810-0.

Abstract

Introduction Otosclerosis is characterized by the fixation of the stapes to the oval window, thereby impairing acoustic signal absorbance. A commonly used surgical technique for improving hearing in cases of otosclerosis is stapedotomy. However, it is unclear whether this surgery restores all the physical characteristics of the tympano-ossicular system.

Objective To evaluate the tympano-ossicular system in individuals with fenestral otosclerosis pre and poststapedotomy using wideband tympanometry.

Method A total of 47 individuals and 71 ears were assessed. The subjects were divided into three groups: presurgery otosclerosis; postsurgery; and a control group of normal-hearing adults. A handheld tympanometer with a wideband module (226–8,000 Hz) was used to take measurements at ambient pressure and under pressurized conditions. The level of statistical significance adopted was p ≤ 0.05.

Results Acoustic absorbance at 226 Hz was low for all groups. At frequencies in the range 630 to 5,040 Hz, each group had a characteristic absorbance curve, allowing them to be distinguished from one another. In the presurgery group, absorbance values were below normal levels, with energy absorbance below 10%. Low energy absorbance was most evident at 1,000 Hz in the presurgery group, but this was not observed in the postsurgery group. Although there was an improvement in hearing, the surgery failed to restore the tympano-ossicular system to normal.

Conclusion Wideband acoustic absorbance proved able to differentiate normal ears and otosclerotic ears pre and postsurgery, under both ambient pressure and pressurized conditions.

* Work developed at Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo/SP, Brazil.




Publication History

Received: 24 March 2021

Accepted: 14 February 2022

Article published online:
17 June 2022

© 2022. Fundação Otorrinolaringologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Hüttenbrink KB. Biomechanics of stapesplasty: a review. Otol Neurotol 2003; 24 (04) 548-557 , discussion 557–559
  • 2 Testa JRG, Millas I, De Vuono IM, Neto MELRBV, Lobato MF. Otosclerose: resultados de estapedotomias. Rev Bras Otorrinolaringol 2002; 68 (02) 251-253
  • 3 Souza JCR, Bento RF, Pereira LV. et al. Evaluation of functional outcomes after stapes surgery in patients with clinical otosclerosis. Int Arch Otorhinolaryngol 2016; 20 (01) 39-42
  • 4 Shahnaz N, Polka L. Distinguishing healthy from otosclerotic ears: effect of probe-tone frequency on static immittance. J Am Acad Audiol 2002; 13 (07) 345-355
  • 5 Shanks J, Shohet J. Tympanometry in clinical practice. In: Katz J, ed. Handbook of clinical audiology. Baltimore, MD: Lippincott Williams & Wilkins; 2009: 157-188
  • 6 Feeney MP, Hunter LL, Kei J. et al. Consensus statement: Eriksholm workshop on wideband absorbance measures of the middle ear. Ear Hear 2013; 34 (Suppl. 01) 78S-79S
  • 7 Velikoselskii A, Papatziamos G, Smeds H, Verrecchia L. Wideband tympanometry in ears with superior canal dehiscence before and after surgical correction. Int J Audiol 2021; 21: 1-6 DOI: 10.1080/14992027.2021.1964041.
  • 8 Saoji AA, Shapiro SB, Finley CC, Koka K, Cassis AM. Changes in wide-band tympanometry absorbance following cochlear implantation. Otol Neurotol 2020; 41 (06) e680-e685 DOI: 10.1097/MAO.0000000000002625.
  • 9 Karuppannan A, Barman A. Evaluation of wideband absorbance in adults with abnormal positive and negative middle ear pressure. J Hear Sci 2020; 10 (04) 40-47 DOI: 10.17430/JHS.2020.10.4.5.
  • 10 Miehe J, Mogensen S, Lyhne N, Skals R, Hougaard DD. Wideband tympanometry as a diagnostic tool for Meniere's disease: a retrospective case-control study. Eur Arch Otorhinolaryngol 2022; Apr 279 (04) 1831-1841 DOI: 10.1007/s00405-021-06882-7.
  • 11 Durante AS, Santos M, Roque NMCF, Gameiro MS, Almeida K, Sousa Neto OM. Wideband acoustic absorbance in children with Down syndrome. Rev Bras Otorrinolaringol (Engl Ed) 2019; 85 (02) 193-198 DOI: 10.1016/j.bjorl.2017.12.006.
  • 12 Feeney MP, Grant IL, Marryott LP. Wideband energy reflectance measurements in adults with middle-ear disorders. J Speech Lang Hear Res 2003; 46 (04) 901-911
  • 13 Keefe DH, Simmons JL. Energy transmittance predicts conductive hearing loss in older children and adults. J Acoust Soc Am 2003; 114 (6 Pt 1): 3217-3238
  • 14 Keefe DH, Archer KL, Schmid KK, Fitzpatrick DF, Feeney MP, Hunter LL. Identifying otosclerosis with aural acoustical tests of absorbance, group delay, acoustic reflex threshold, and otoacoustic emissions. J Am Acad Audiol 2017; 28 (09) 838-860
  • 15 Niemczyk E, Lachowska M, Tataj E, Kurczak K, Niemczyk K. Wideband tympanometry and absorbance measurements in otosclerotic ears. Laryngoscope 2019; 129 (10) E365-E376
  • 16 Kelava I, Ries M, Valent A. et al. The usefulness of wideband absorbance in the diagnosis of otosclerosis. Int J Audiol 2020; 59 (11) 859-865
  • 17 Feeney MP, Keefe DH, Hunter LL, Fitzpatrick DF, Putterman DB, Garinis AC. Effects of otosclerosis on middle ear function assessed with wideband absorbance and absorbed power. Ear Hear 2020; 42 (03) 547-557
  • 18 Karuppannan A, Barman A. Wideband absorbance tympanometry: a novel method in identifying otosclerosis. Eur Arch Otorhinolaryngol 2021; 278 (11) 4305-4314 DOI: 10.1007/s00405-020-06571-x.
  • 19 Shahnaz N, Bork K, Polka L, Longridge N, Bell D, Westerberg BD. Energy reflectance and tympanometry in normal and otosclerotic ears. Ear Hear 2009; 30 (02) 219-233
  • 20 Śliwa L, Kochanek K, Jedrzejczak WW, Mrugała K, Skarżyński H. Measurement of wideband absorbance as a test for otosclerosis. J Clin Med 2020; 9 (06) 1908 DOI: 10.3390/jcm9061908.
  • 21 Niemczyk E, Lachowska M, Tataj E, Kurczak K, Niemczyk K. Wideband acoustic immitance - Absorbance measurements in ears after stapes surgery. Auris Nasus Larynx 2020; 47 (06) 909-923 DOI: 10.1016/j.anl.2020.04.011.
  • 22 Aithal S, Kei J, Driscoll C, Khan A, Swanston A. Wideband absorbance outcomes in newborns: a comparison with high-frequency tympanometry, automated brainstem response, and transient evoked and distortion product otoacoustic emissions. Ear Hear 2015; 36 (05) e237-e250 DOI: 10.1097/AUD.0000000000000175.
  • 23 Jerger J. Clinical experience with impedance audiometry. Arch Otolaryngol 1970; 92 (04) 311-324 DOI: 10.1001/archotol.1970.04310040005002.
  • 24 Frade C, Lechuga R, Castro C, Labella T. Análisis de la frecuencia de resonancia del oído medio en la otosclerosis[Analysis of the resonant frequency of the middle ear in otosclerosis]. Acta Otorrinolaringol Esp 2000; 51 (04) 309-313 Spanish
  • 25 Ogut F, Serbetcioglu B, Kirazli T, Kirkim G, Gode S. Results of multiple-frequency tympanometry measures in normal and otosclerotic middle ears. Int J Audiol 2008; 47 (10) 615-620 DOI: 10.1080/14992020802178656.
  • 26 Hueb MM, Silveira JAM. Otosclerose e outras osteodistrofias do osso temporal: tratado de otorrinolaringologia e cirurgia cervicofacial. In: Caldas Neto S, Mello Júnior JF, Martins RHG, Costa S, eds. 2ª ed. Vol. 2. São Paulo: Roca; 2011: 163-176
  • 27 Lechuga R, Frade C, Soto A, Labella T. [Parameters of normality in multifrequency tympanometry]. Acta Otorrinolaringol Esp 2000; 51 (03) 207-210
  • 28 Wegner I, Shahnaz N, Grolman W, Bance ML. Wideband acoustic immittance measurements in assessing crimping status following stapedotomy: A temporal bone study. Int J Audiol 2017; 56 (01) 1-7 DOI: 10.1080/14992027.2016.1214759.
  • 29 Shaver MD, Sun XM. Wideband energy reflectance measurements: effects of negative middle ear pressure and application of a pressure compensation procedure. J Acoust Soc Am 2013; 134 (01) 332-341 DOI: 10.1121/1.4807509.
  • 30 Liu YW, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP, Keefe DH. Wideband absorbance tympanometry using pressure sweeps: system development and results on adults with normal hearing. J Acoust Soc Am 2008; 124 (06) 3708-3719 DOI: 10.1121/1.3001712.
  • 31 Ward BK, Carey JP, Minor LB. Superior Canal Dehiscence Syndrome: Lessons from the First 20 Years. Front Neurol 2017; Apr 28 (08) 177
  • 32 Danesh AA, Shahnaz N, Hall III JW. The audiology of otosclerosis. Otolaryngol Clin North Am 2018; 51 (02) 327-342 DOI: 10.1016/j.otc.2017.11.007.