CC BY 4.0 · Journal of Health and Allied Sciences NU 2023; 13(02): 161-167
DOI: 10.1055/s-0042-1751068
Review Article

Diffusion Tensor Imaging in Spinal Cord Injury: A Review

Akshada Atchut Kauthankar
1   Department of Radio-diagnosis and Imaging, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
1   Department of Radio-diagnosis and Imaging, K S Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
› Author Affiliations


Magnetic resonance diffusion tensor imaging (DTI) is a recent technique that can measure the direction and magnitude of diffusion of water. It is widely being utilized to evaluate several brain and spinal cord pathologies. The objective of this review is to evaluate the importance of the DTI in patients with spinal cord injury (SCI). It aims to review various articles on DTI SCI and includes both animal and human studies. This will help to describe the current status of the clinical applications of DTI and show its potential as a helpful instrument in clinical practice. The PubMed database was searched for articles relating to the application of DTI in SCI. Relevant articles were also used for the review. A variety of DTI parameters have been studied in various articles. The standard parameters are fractional anisotropy (FA) values, apparent diffusion coefficient (ADC) values, radial diffusivity values, and axial diffusivity values, followed by tractography. FA and ADC values are the most commonly used parameters. The findings observed in most of the studies are increased FA and reduced ADC values following injury to the spinal cord. DTI data metrics possess the potential to become a potent clinical tool in patients with SCI. It is helpful for diagnosis, prognosis, treatment planning, as well as to evaluate the recovery. Nonetheless, to overcome the limitations and determine its reliability clinically, more research has to be performed.


This article reports the current status of the clinical applications of DTI and shows its potential as a helpful instrument in clinical practice.

Publication History

Article published online:
19 July 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

  • Reference

  • 1 Alkadeem RMDEAA, El-Shafey MHR, Eldein AEMS, Nagy HA. Magnetic resonance diffusion tensor imaging of acute spinal cord injury in spinal trauma. Egypt J Radiol Nucl Med 2021; 52 (01) DOI: 10.1186/s43055-021-00450-z.
  • 2 D'souza MM, Choudhary A, Poonia M, Kumar P, Khushu S. Diffusion tensor MR imaging in spinal cord injury. Injury 2017; 48 (04) 880-884
  • 3 Rao JS, Zhao C, Yang ZY. et al. Diffusion tensor tractography of residual fibers in traumatic spinal cord injury: a pilot study. J Neuroradiol 2013; 40 (03) 181-186
  • 4 Kamble RB, Venkataramana NK, Naik AL, Rao SV. Diffusion tensor imaging in spinal cord injury. Indian J Radiol Imaging 2011; 21 (03) 221-224
  • 5 Shanmuganathan K, Gullapalli RP, Zhuo J, Mirvis SE. Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol 2008; 29 (04) 655-659
  • 6 Zaninovich OA, Avila MJ, Kay M, Becker JL, Hurlbert RJ, Martirosyan NL. The role of diffusion tensor imaging in the diagnosis, prognosis, and assessment of recovery and treatment of spinal cord injury: a systematic review. Neurosurg Focus 2019; 46 (03) E7 DOI: 10.3171/2019.1.FOCUS18591.
  • 7 Vedantam A, Jirjis M, Eckhardt G. et al. Diffusion tensor imaging of the spinal cord: a review. Coluna/Columna 2013; 12 (01) 64-69
  • 8 Mohamed FB, Hunter LN, Barakat N. et al. Diffusion tensor imaging of the pediatric spinal cord at 1.5T: preliminary results. AJNR Am J Neuroradiol 2011; 32 (02) 339-345
  • 9 Ducreux D, Lepeintre JF, Fillard P, Loureiro C, Tadié M, Lasjaunias P. MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas. AJNR Am J Neuroradiol 2006; 27 (01) 214-216
  • 10 El Basset ASA, Saeed AHM, Tawfik MH, El Hady MSA. Value of diffusion tensor imaging and tractography in unilateral lumbar disc prolapse. Egypt J Radiol Nucl Med 2021; 52 (01) DOI: 10.1186/s43055-020-00380-2.
  • 11 Talbott JF, Huie JR, Ferguson AR, Bresnahan JC, Beattie MS, Dhall SS. MR Imaging for assessing injury severity and prognosis in acute traumatic spinal cord injury. Radiol Clin North Am 2019; 57 (02) 319-339
  • 12 Ellingson BM, Salamon N, Holly LT. Imaging techniques in spinal cord injury. World Neurosurg 2014; 82 (06) 1351-1358
  • 13 Li J, Pan P, Song W, Huang R, Chen K, Shang H. A meta-analysis of diffusion tensor imaging studies in amyotrophic lateral sclerosis. Neurobiol Aging 2012; 33 (08) 1833-1838
  • 14 Metwalli NS, Benatar M, Nair G, Usher S, Hu X, Carew JD. Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res 2010; 1348: 156-164
  • 15 Filippini N, Douaud G, Mackay CE, Knight S, Talbot K, Turner MR. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 2010; 75 (18) 1645-1652
  • 16 Weinshenker BG. Epidemiology of multiple sclerosis. Neurol Clin 1996; 14 (02) 291-308
  • 17 Tae WS, Ham BJ, Pyun SB, Kang SH, Kim BJ. Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol 2018; 14 (02) 129-140
  • 18 Klistorner A, Vootakuru N, Wang C. et al. Decoding diffusivity in multiple sclerosis: analysis of optic radiation lesional and non-lesional white matter. PLoS One 2015; 10 (03) e0122114 DOI: 10.1371/journal.pone.0122114.
  • 19 Arfanakis K, Hermann BP, Rogers BP, Carew JD, Seidenberg M, Meyerand ME. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging 2002; 20 (07) 511-519
  • 20 Rugg-Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Duncan JS. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain 2001; 124 (Pt 3): 627-636
  • 21 Goedert M. NEURODEGENERATION. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 2015; 349 (6248): 1255555
  • 22 Ofori E, Pasternak O, Planetta PJ. et al. Longitudinal changes in free-water within the substantia nigra of Parkinson's disease. Brain 2015; 138 (Pt 8): 2322-2331
  • 23 Cochrane CJ, Ebmeier KP. Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 2013; 80 (09) 857-86
  • 24 Yang Q, Tress BM, Barber PA. et al. Serial study of apparent diffusion coefficient and anisotropy in patients with acute stroke. Stroke 1999; 30 (11) 2382-2390
  • 25 Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 2002; 23 (05) 794-802
  • 26 Aoki Y, Inokuchi R. A voxel-based meta-analysis of diffusion tensor imaging in mild traumatic brain injury. Neurosci Biobehav Rev 2016; 66: 119-126
  • 27 Ducreux D, Fillard P, Facon D. et al. Diffusion tensor magnetic resonance imaging and fiber tracking in spinal cord lesions: current and future indications. Neuroimaging Clin N Am 2007; 17 (01) 137-147
  • 28 Kelley BJ, Harel NY, Kim CY. et al. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma 2014; 31 (15) 1362-1373
  • 29 Elliott R, Zahn R, Deakin JFW, Anderson IM. Affective cognition and its disruption in mood disorders. Neuropsychopharmacology 2011; 36 (01) 153-182
  • 30 Stephanou K, Davey CG, Kerestes R, Whittle S, Harrison BJ. Hard to look on the bright side: neural correlates of impaired emotion regulation in depressed youth. Soc Cogn Affect Neurosci 2017; 12 (07) 1138-1148
  • 31 Liao Y, Huang X, Wu Q. et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci 2013; 38 (01) 49-56
  • 32 Jones JGA, Cen SY, Lebel RM, Hsieh PC, Law M. Diffusion tensor imaging correlates with the clinical assessment of disease severity in cervical spondylotic myelopathy and predicts outcome following surgery. AJNR Am J Neuroradiol 2013; 34 (02) 471-478
  • 33 Alizadeh M, Intintolo A, Middleton DM. et al. Reduced FOV diffusion tensor MR imaging and fiber tractography of pediatric cervical spinal cord injury. Spinal Cord 2017; 55 (03) 314-320
  • 34 Bazley FA, Pourmorteza A, Gupta S, Pashai N, Kerr C, All AH. DTI for assessing axonal integrity after contusive spinal cord injury and transplantation of oligodendrocyte progenitor cells. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. Published online 2012:82–85. doi:10.1109/EMBC.2012.6345876
  • 35 Cheran S, Shanmuganathan K, Zhuo J. et al. Correlation of MR diffusion tensor imaging parameters with ASIA motor scores in hemorrhagic and nonhemorrhagic acute spinal cord injury. J Neurotrauma 2011; 28 (09) 1881-1892
  • 36 Patel SP, Smith TD, VanRooyen JL. et al. Serial diffusion tensor imaging in vivo predicts long-term functional recovery and histopathology in rats following different severities of spinal cord injury. J Neurotrauma 2016; 33 (10) 917-928
  • 37 Choe AS, Belegu V, Yoshida S. et al. Extensive neurological recovery from a complete spinal cord injury: a case report and hypothesis on the role of cortical plasticity. Front Hum Neurosci 2013; 7 (JUN): 290 DOI: 10.3389/fnhum.2013.00290.
  • 38 Rodrigues TB, , Ballesteros, Paloma D. In vivo serial diffusion tensor imaging of experimental spinal cord injury. J Neurosci Res 2007; 3253 (April): 3244-3253
  • 39 Wang KY, Idowu O, Thompson CB. et al. Tract-specific diffusion tensor imaging in cervical spondylotic myelopathy before and after decompressive spinal surgery: preliminary results. Clin Neuroradiol 2017; 27 (01) 61-69
  • 40 Ellingson BM, Kurpad SN, Schmit BD. Ex vivo diffusion tensor imaging and quantitative tractography of the rat spinal cord during long-term recovery from moderate spinal contusion. J Magn Reson Imaging 2008; 28 (05) 1068-1079
  • 41 Song T, Chen WJ, Yang B. et al. Diffusion tensor imaging in the cervical spinal cord. Eur Spine J 2011; 20 (03) 422-428
  • 42 Petersen JA, Wilm BJ, von Meyenburg J. et al. Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures. J Neurotrauma 2012; 29 (08) 1556-1566
  • 43 Li XH, Li JB, He XJ, Wang F, Huang SL, Bai ZL. Timing of diffusion tensor imaging in the acute spinal cord injury of rats. Sci Rep 2015; 5: 12639 DOI: 10.1038/srep12639.
  • 44 Alexander AL, Hurley SA, Samsonov AA. et al. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 2011; 1 (06) 423-446
  • 45 Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002; 17 (03) 1429-1436
  • 46 Ferguson AR, Irvine KA, Gensel JC. et al. Derivation of multivariate syndromic outcome metrics for consistent testing across multiple models of cervical spinal cord injury in rats. PLoS One 2013; 8 (03) e59712 DOI: 10.1371/journal.pone.0059712.
  • 47 Medana IM, Esiri MM. Axonal damage: a key predictor of outcome in human CNS diseases. Brain 2003; 126 (Pt 3): 515-530
  • 48 Kim JH, Loy DN, Wang Q. et al. Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery. J Neurotrauma 2010; 27 (03) 587-598
  • 49 Koskinen E, Brander A, Hakulinen U. et al. Assessing the state of chronic spinal cord injury using diffusion tensor imaging. J Neurotrauma 2013; 30 (18) 1587-1595
  • 50 Ellingson BM, Salamon N, Hardy AJ, Holly LT. Prediction of neurological impairment in cervical spondylotic myelopathy using a combination of diffusion MRI and proton MR spectroscopy. PLoS One 2015; 10 (10) e0139451 DOI: 10.1371/journal.pone.0139451.
  • 51 Ellingson BM, Salamon N, Woodworth DC, Holly LT. Correlation between degree of subvoxel spinal cord compression measured with super-resolution tract density imaging and neurological impairment in cervical spondylotic myelopathy. J Neurosurg Spine 2015; 22 (06) 631-638
  • 52 Vargas MI, Delavelle J, Jlassi H. et al. Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology 2008; 50 (01) 25-29
  • 53 Kerkovský M, Bednarík J, Dušek L. et al. Magnetic resonance diffusion tensor imaging in patients with cervical spondylotic spinal cord compression: correlations between clinical and electrophysiological findings. Spine 2012; 37 (01) 48-56
  • 54 Ries M, Jones RA, Dousset V, Moonen CTW. Diffusion tensor MRI of the spinal cord. Magn Reson Med 2000; 44 (06) 884-892
  • 55 Thomsen C, Henriksen O, Ring P. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging. Acta Radiol 1987; 28 (03) 353-361
  • 56 Rajasekaran S, Kanna RM, Shetty AP. Diffusion tensor imaging of the spinal cord and its clinical applications. J Bone Joint Surg Br 2012; 94 (08) 1024-1031
  • 57 Alizadeh M, Fisher J, Saksena S. et al. Reduced field of view diffusion tensor imaging and fiber tractography of the pediatric cervical and thoracic spinal cord injury. J Neurotrauma 2018; 35 (03) 452-460
  • 58 Mulcahey MJ, Samdani AF, Gaughan JP. et al. Diagnostic accuracy of diffusion tensor imaging for pediatric cervical spinal cord injury. Spinal Cord 2013; 51 (07) 532-537
  • 59 Lee S, Lee YH, Chung TS. et al. Accuracy of diffusion tensor imaging for diagnosing cervical spondylotic myelopathy in patients showing spinal cord compression. Korean J Radiol 2015; 16 (06) 1303-1312
  • 60 Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K. Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology 2003; 45 (02) 90-94
  • 61 Demir A, Ries M, Moonen CTW. et al. Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 2003; 229 (01) 37-43
  • 62 Ford JC, Hackney DB, Alsop DC. et al. MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn Reson Med 1994; 31 (05) 488-494
  • 63 Lee JW, Kim JH, Park JB. et al. Diffusion tensor imaging and fiber tractography in cervical compressive myelopathy: preliminary results. Skeletal Radiol 2011; 40 (12) 1543-1551
  • 64 Maier SE, Mamata H. Diffusion tensor imaging of the spinal cord. Ann N Y Acad Sci 2005; 1064: 50-60
  • 65 Ellingson BM, Ulmer JL, Kurpad SN, Schmit BD. Diffusion tensor MR imaging of the neurologically intact human spinal cord. AJNR Am J Neuroradiol 2008; 29 (07) 1279-1284
  • 66 Thurnher MM, Law M. Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord. Magn Reson Imaging Clin N Am 2009; 17 (02) 225-244
  • 67 Bastin ME, Armitage PA, Marshall I. A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging. Magn Reson Imaging 1998; 16 (07) 773-785
  • 68 Carballido-Gamio J, Xu D, Newitt D, Han ET, Vigneron DB, Majumdar S. Single-shot fast spin-echo diffusion tensor imaging of the lumbar spine at 1.5 and 3 T. Magn Reson Imaging 2007; 25 (05) 665-670
  • 69 Rückenmarks D, Rossi C. Diffusion Tensor Imaging of the Spinal Cord at 1.5 and 3.0 Tesla. Published online 2007:219–224. doi:10.1055/s-2007-962832
  • 70 Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259-267. doi:10.1016/S0006-3495(94)80775-1.