CC BY-NC-ND 4.0 · SynOpen 2022; 06(04): 263-269
DOI: 10.1055/s-0042-1751374
paper

Zn/ZnBr2 Catalysed Reaction of Aldehydes with Allylbromide: Synthesis of 2,6-Disubstituted 4-Bromotetrahydropyrans

D. O. Biradar
a   Organic Synthesis Laboratory, Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, Telangana, India
,
Y. D. Mane
b   BSS Arts, Science & Commerce College, Makni Tq, Lohara-413604, Osmanabad, MS, India
,
Y. P. Sarnikar
c   Dayanand Science College, Latur-413512, MS, India
,
S. G. Kulkarni
d   Maharastra Mahavidyalaya, Nilanga-413521, MS, India
,
B. V. Subba Reddy
a   Organic Synthesis Laboratory, Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, Telangana, India
,
a   Organic Synthesis Laboratory, Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, Telangana, India
› Institutsangaben


Abstract

An efficient approach for the one-pot synthesis of 4-bromotetrahydropyrans in a highly diastereoselective manner via the alkynylation followed by Prins cyclisation is described. The method employs aldehydes and allyl bromide as reactants, with a Zn/ZnBr2 catalytic system in CH2Cl2. A variety of 2,6-disubstituted 4-bromotetrahydropyran derivatives were obtained in good yields.

Supporting Information



Publikationsverlauf

Eingereicht: 29. Juni 2022

Angenommen nach Revision: 20. September 2022

Artikel online veröffentlicht:
19. Oktober 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Martín T, Padrón JI, Martín VS. Synlett 2014; 25: 12
    • 1b Nicolaou KC, Sorenson EJ. Classics in Total Synthesis. VCH Weinheim. 1969
    • 1c Reddy UC, Raju BR, Kumar EK. P, Saikia AK. J. Org. Chem. 2008; 73: 1628
    • 1d Yoshimitsu T, Makino T, Nagaoka H. J. Org. Chem. 2004; 69: 1993
    • 1e Lee J, Oh HS, Kang HY. Tetrahedron Lett. 2015; 56: 1099
    • 1f Norcross RD, Paterson I. Chem. Rev. 1995; 95: 2041
    • 1g Tian X, Jaber JJ, Rychnovsky SD. J. Org. Chem. 2006; 71: 3176
    • 1h Yang XF, Wang M, Zhang Y, Li CJ. Synlett 2005; 1912
    • 2a Su BN, Takaishi Y, Kusumi T, Morinols AL. Tetrahedron 1999; 55: 14571
    • 2b Yamauchi S, Kawahara S, Wukirsari T, Nishiwaki H, Nishi K, Sugahara T, Akiyama K, Kishida T. Bioorg. Med. Chem. Lett. 2013; 23: 4923
    • 2c Akiyama K, Yamauchi S, Maruyama M, Sugahara T, Kishida T, Koba Y. Biosci., Biotechnol., Biochem. 2009; 73: 129
    • 2d Masuda K, Nishiwaki H, Akiyama K, Yamauchi S, Maruyama M, Sugahara T, Kishida T. Biosci., Biotechnol., Biochem. 2010; 74: 2071
    • 3a Ghosh AK, Anderson DD. Future Med. Chem. 2011; 3: 1181
    • 3b Capim SL, Gonçalves GM, dos Santos GC. M, Marinho BG, Vasconcellos ML. A. A. Bioorg. Med. Chem. 2013; 21: 6003
    • 3c Capim SL, Carneiro PH. P, Castro PC, Barros MR. M, Marinho BG, Vasconcellos ML. A. A. Eur. J. Med. Chem. 2012; 58: 1
    • 3d Kharkar PS, Reith ME. A, Dutta AK. J. Comput.-Aided Mol. Des. 2008; 22: 1
    • 4a Surivet JP, Zumbrunn C, Rueedi G, Bur D, Bruyère T, Locher H, Ritz D, Seiler P, Kohl C, Ertel EA, Hess P, Gauvin JC, Mirre A, Kaegi V, dos Santos M, Kraemer S, Gaertner M, Delers J, Enderlin PM, Weiss M, Sube R, Hadana H, Keck W, Hubschwerlen C. J. Med. Chem. 2015; 58: 927
    • 4b Surivet JP, Zumbrunn C, Bruyère T, Bur D, Kohl C, Locher HH, Seiler P, Ertel EA, Hess P, Enderlin PM, Enderlin PS, Gauvin JC, Mirre A, Hubschwerlen C, Ritz D, Rueedi G. J. Med. Chem. 2017; 60: 3776
    • 5a León LG, Miranda PO, Martín VS, Padrón JI, Padrón JM. Bioorg. Med. Chem. Lett. 2007; 17: 2681
    • 5b Carrillo R, León LG, Martín T, Martín VS, Padrón JM. Bioorg. Med. Chem. Lett. 2007; 17: 780
    • 5c Miranda PO, León LG, Martín VS, Padrón JI, Padrón JM. Bioorg. Med. Chem. Lett. 2006; 16: 3135
    • 6a Muzart J. J. Mol. Catal. A: Chem. 2010; 319: 1
    • 6b Smith AB. III, Fox RJ, Razler T. Acc. Chem. Res. 2008; 41: 675
    • 6c Larrosa I, Romea P, Urpí F. Tetrahedron 2008; 64: 2683
    • 6d Boivin TL. B. Tetrahedron 1987; 43: 3309
    • 6e Nasir NM, Ermanis K, Clarke PA. Org. Biomol. Chem. 2014; 12: 3323
    • 6f Clarke PA, Santos S. Eur. J. Org. Chem. 2006; 2045
  • 7 McDonald BR, Scheidt KA. Acc. Chem. Res. 2015; 48: 1172
    • 8a Yamazaki S, Fujinami K, Maitoko Y, Ueda K, Kakiuchi K. J. Org. Chem. 2013; 78: 8405
    • 8b Yadav VK, Verma AK, Kumar P, Hulika V. Chem. Commun. 2014; 50: 15457
    • 8c Budakoti A, Mondal PK, Verma P, Khamrai J. Beilstein J. Org. Chem. 2021; 17: 932
    • 8d Padmaja P, Reddy PN, Reddy BV. S. Org. Biomol. Chem. 2020; 18: 7514
    • 8e Reddy BV. S, Nair PN, Antony A, Srivastava N. Eur. J. Org. Chem. 2017; 5484
    • 9a Wang D, Zhao X, Liu L, Chen YJ. Tetrahedron 2006; 62: 7113
    • 9b Poliane KB, JoãoMarcos G, deFerreira O, Fabio PL, Silva ML. A, Vasconcellos A, Juliana AV. Molecules 2019; 24: 2084
    • 9c Wen M, Tang L, Chang W, Li J. Sci. China, Ser. B: Chem. 2005; 48: 38
    • 10a Konakanchi R, Kankala S, Kotha LR. Synth. Commun. 2018; 48: 1777
    • 10b Wu XF. Chem. Asian J. 2012; 7: 2502
    • 10c Wu XF, Neumann H. Adv. Synth. Catal. 2012; 354: 3141
    • 10d Enthaler S. ACS Catal. 2013; 3: 150
    • 10e Zhu A, Li L, Wang J, Zhuo K. Green Chem. 2011; 13: 1244
    • 10f Cheung CW, Zhurkin FE, Hu X. J. Am. Chem. Soc. 2015; 137: 4932
    • 10g Barzanò G, Cheseaux A, Hu X. Org. Lett. 2019; 21: 490
  • 11 Miranda LS. M, Vasconcellos ML. A. A. Synthesis 2004; 1767