Synlett 2023; 34(06): 629-634
DOI: 10.1055/s-0042-1751376
cluster
Chemical Synthesis and Catalysis in India

Lewis Acid Promoted Homodimerization of Styrene Diols: An Efficient Approach toward 2-Phenylnaphthalenes

Rina Mahato
,
Jabir Khan
,
Aparna Tyagi
,
Chinmoy Kumar Hazra
The authors thank the Science and Engineering Research Board (SERB), New Delhi, India, for financial support in the form of a Start-up Research Grant (File No.: SRG/2019/000213). They also thank IIT Delhi, New Delhi, for the institute’s seed grant money. R.M., J.K., and A.T. are grateful to CSIR/UGC (MHRD), India, for their research fellowships.


Abstract

We report a straightforward, metal-free, efficient protocol for the synthesis of 2-phenylnaphthalenes from 1-phenylethane-1,2-diols under mild conditions. In this strategy, 1,1,1,3,3,3-hexafluoro-2-propanol is used as a solvent that stabilizes the reaction intermediate. An in situ IR experiment revealed that the reaction proceeds through the formation of phenylacetaldehyde followed by a [4+2] Diels–Alder reaction. Several control experiments were performed to gain mechanistic insights into the reaction.

Supporting Information



Publication History

Received: 09 May 2022

Accepted after revision: 26 September 2022

Article published online:
19 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Makar S, Saha T, Singh SK. Eur. J. Med. Chem. 2019; 161: 252
    • 1b Reddy RA, Baumeister U, Keith C, Tschierske C. J. Mater. Chem. 2007; 17: 62
    • 1c Pinto-Bazurco Mendieta MA. E, Hu Q, Engel M, Hartmann RW. J. Med. Chem. 2013; 56: 6101
    • 1d Huang M.-H, Wu S.-N, Wang J.-P, Lin C.-H, Lu S.-I, Liao L.-F, Shen A.-Y. Drug Dev. Res. 2003; 60: 261
    • 1e Bhosale SV, Jania CH, Langford SJ. Chem. Soc. Rev. 2008; 37: 331
    • 1f Svoboda J, Novotna V, Kozmik V, Glogarová M, Weissflog W, Diele S, Pelzl G. J. Mater. Chem. 2003; 13: 2104
    • 1g Ukita T, Nakamura Y, Kubo A, Yamamoto Y, Takahashi M, Kotera J, Ikeo T. J. Med. Chem. 1999; 42: 1293
    • 1h Dai J, Liu Y, Zhou Y.-D, Nagle DG. J. Nat. Prod. 2007; 70: 1824
    • 1i Krohn K, Kouam SF, Cludius-Brandt S, Draeger S, Schulz B. Eur. J. Org. Chem. 2008; 3615
    • 1j Foulke-Abel J, Agbo H, Zhang H, Mori S, Watanabe CM. H. Nat. Prod. Rep. 2011; 28: 693
    • 2a Wetzel M, Marchais-Oberwinkler S, Perspicace E, Möller G, Adamski J, Hartmann RW. J. Med. Chem. 2011; 54: 7547
    • 2b Marchais-Oberwinkler S, Wetzel M, Ziegler E, Kruchten P, Werth R, Henn C, Hartmann RW, Frotscher M. J. Med. Chem. 2011; 54: 534
    • 2c Mewshaw RE, Edsall RJ. Jr, Yang C, Manas ES, Xu ZB, Henderson RA, Keith JC. Jr, Harris HA. J. Med. Chem. 2005; 48: 3953
    • 2d Fang J, Akwabi-Ameyaw A, Britton JE, Katamreddy SR, Navas FIII, Miller AB, Williams SP, Gray DW, Orband-Miller LA, Shearin J, Heyer D. Bioorg. Med. Chem. Lett. 2008; 18: 5075
    • 2e Frotscher M, Ziegler E, Marchais-Oberwinkler S, Kruchten P, Neugebauer A, Fetzer L, Scherer C, Müller-Vieira U, Messinger J, Thole H, Hartmann RW. J. Med. Chem. 2008; 51: 2158
    • 3a Yu D.-G, Li B.-J, Zheng S.-F, Guan B.-T, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2010; 49: 4566
    • 3b Yoshikai N, Matsuda H, Nakamura E. J. Am. Chem. Soc. 2009; 131: 9590
    • 3c Shirakawa E, Hayashi Y, Itoh K.-i, Watabe R, Uchiyama N, Konagaya W, Masui S, Hayashi T. Angew. Chem. Int. Ed. 2012; 51: 218
    • 3d Zhao C.-W, Ma J.-P, Liu Q.-K, Yu Y, Wang P, Li Y.-A, Wang K, Dong Y.-B. Green Chem. 2013; 15: 3150
    • 3e Tobisu M, Shimasaki T, Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
    • 3f Guan B.-T, Wang Y, Li B.-J, Yu D.-G, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 14468
    • 3g Leowanawat P, Zhang N, Percec V. J. Org. Chem. 2012; 77: 1018
    • 3h Viswanathan GS, Li C.-J. Synlett 2002; 1553
    • 3i James CA, Snieckus V. J. Org. Chem. 2009; 74: 4080
    • 4a Li W, Zhou L, Zhang J. Chem. Eur. J. 2016; 22: 1558
    • 4b Kocsis LS, Benedetti E, Brummond KM. Org. Lett. 2012; 14: 4430
    • 4c Karunakaran J, Mohanakrishnan AK. Org. Lett. 2018; 20: 966
    • 4d Kudoh T, Mori T, Shirahama M, Yamada M, Ishikawa T, Saito S, Kobayashi H. J. Am. Chem. Soc. 2007; 129: 4939
    • 5a Feng C, Loh T.-P. J. Am. Chem. Soc. 2010; 132: 17710
    • 5b Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
    • 6a Hein SJ, Lehnherr D, Arslan H, Uribe-Romo FJ, Dichtel WR. Acc. Chem. Res. 2017; 50: 2776
    • 6b Lehnherr D, Alzola JM, Lobkovsky EB, Dichtel WR. Chem. Eur. J. 2015; 21: 18122
  • 7 Alder RW, East SP, Harvey JN, Oakley MT. J. Am. Chem. Soc. 2003; 125: 5375
    • 8a Zhou G, Zhang J. Chem. Commun. 2010; 46: 6593
    • 8b Kawai N, Abe R, Uenishi J. Tetrahedron Lett. 2009; 50: 6580
    • 8c Pan Z, Wang S, Brethorst JT, Douglas CJ. J. Am. Chem. Soc. 2018; 140: 3331
  • 9 Asao N, Nogami T, Lee S, Yamamoto Y. J. Am. Chem. Soc. 2003; 125: 10921
  • 10 Jagdale AR, Park JH, Youn SW. J. Org. Chem. 2011; 76: 7204
    • 11a Mudududdla R, Sharma R, Abbat S, Bharatam PV, Vishwakarma RA, Bharate SB. Chem. Commun. 2014; 50: 12076
    • 11b Zou S, Zhang Z, Chen C, Xi C. Org. Biomol. Chem. 2021; 19: 8559
  • 12 Wagh KV, Bhanage BM. Green Chem. 2015; 17: 4446
    • 13a Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 0088
    • 13b Bhattacharya T, Ghosh A, Maity D. Chem. Sci. 2021; 12: 3857
    • 13c Zhu Y, Colomer I, Thompson AL, Donohoe TJ. J. Am. Chem. Soc. 2019; 141: 6489
    • 14a Noyori R, Murata S, Suzuki M. Tetrahedron 1981; 37: 3899
    • 14b Tyagi A, Yadav N, Khan J, Singh S, Hazra CK. Asian J. Org. Chem. 2020; 10: 334
    • 15a Singh S, Mahato R, Sharma P, Yadav N, Vodnala N, Hazra CK. Chem. Eur. J. 2022; e202104545
    • 15b Khan J, Tyagi A, Yadav N, Mahato R, Hazra CK. J. Org. Chem. 2021; 24: 17833
    • 15c Tyagi A, Khan J, Yadav N, Mahato R, Hazra CK. J. Org. Chem. 2022; 87: 10229
    • 15d Yadav N, Khan J, Tyagi A, Singh S, Hazra CK. J. Org. Chem. 2022; 87: 6886
    • 15e Tyagi A, Yadav N, Khan J, Mondal S, Hazra CK. Chem. Asian J. 2022; 17: e202200379
  • 16 2-Phenylnaphthalene Derivatives 3ao; General Procedure A dry sealed tube was charged with the appropriate styrene diol derivative 1 (1 equiv, 0.1 mmol). The tube was evacuated with a high-vacuum pump and then filled with N2 from a balloon. HFIP (0.6 mL), TMSOTf (20 mol%, 3.6 μL), and 1,3-dimethoxybenzene (1.1 equiv, 0.11 mmol) were added sequentially, and the mixture was stirred at 60 °C for 2 h. On completion of the reaction (TLC, 5% EtOAc–hexane), the solvent was removed under reduced pressure to give a crude product that was purified by column chromatography (silica gel, hexane). 2-Phenylnaphthalene (3a) White solid; yield: 18.8 mg (92%); mp 101–102 °C. 1H NMR (400 MHz, CDCl3): δ = 8.03 (s, 1 H), 7.93–7.81 (m, 3 H), 7.76–7.68 (m, 3 H), 7.47 (td, J = 6.5, 2.9 Hz, 4 H), 7.36 (t, J = 7.4 Hz, 1 H). 13C NMR (126 MHz, CDCl3): δ = 141.1, 138.6, 133.7, 132.6, 128.9, 128.4, 128.2, 127.6, 127.4, 127.3, 126.3, 125.9, 125.8, 125.6.