CC BY 4.0 · SynOpen 2023; 07(01): 8-16
DOI: 10.1055/s-0042-1751408
paper

Selective Syntheses of Coumarin and Benzofuran Derivatives Using Phenols and α-Methoxy-β-ketoesters

Ryo Miyata
,
Takashi Shigeta
,
Shigenori Kumazawa
,
Masahiro Egi
This research was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant JP20J23632.


Abstract

Selective syntheses of coumarin and benzofuran derivatives were achieved via HClO4-mediated intermolecular annulation using phenols and α-methoxy-β-ketoesters. Coumarins are formed under dehydrated conditions, whereas benzofurans are formed in the presence of water. In the synthetic process of benzofurans, α-methoxy-β-ketoesters are converted into α-methoxyacetophenones, and the methoxy group is an important element in the intermolecular annulation.

Supporting Information



Publication History

Received: 11 December 2022

Accepted: 13 December 2022

Article published online:
26 January 2023

© 2023. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Hussain MI, Syed QA, Khattak MN. K, Hafez B, Reigosa MJ, El-Keblawy A. Biologia 2019; 74: 863
    • 1b Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Molecules 2018; 23: 250
    • 1c Miao Y.-H, Hu Y.-H, Yang J, Liu T, Sun J, Wang X.-J. RSC Adv. 2019; 9: 27510
    • 1d Khanam H. Shamsuzzaman Eur. J. Med. Chem. 2015; 97: 483
  • 2 Zhang K, Ding W, Sun J, Zhang B, Lu F, Lai R, Zou Y, Yedid G. Biochimie 2014; 107: 203
  • 3 Pierson J.-T, Dumètre A, Hutter S, Delmas F, Laget M, Finet J.-P, Azas N, Combes S. Eur. J. Med. Chem. 2010; 45: 864
  • 4 Xu Z, Chen Q, Zhang Y, Liang C. Fitoterapia 2021; 150: 104863
  • 5 Heghes SC, Vostinaru O, Mogosan C, Miere D, Iuga CA, Filip L. Front. Pharmacol. 2022; 13: 803338
  • 6 Sun X.-Y, Liu T, Sun J, Wang X.-J. RSC Adv. 2020; 10: 10826
  • 7 Chen H, Zeng X, Gao C, Ming P, Zhang J, Guo C, Zhou L, Lu Y, Wang L, Huang L, He X, Mei L. Sci. Rep. 2015; 5: 10893
  • 8 Maeda S, Masuda H, Tokoroyama T. Chem. Pharm. Bull. 1994; 42: 2500
  • 9 Scammells PJ, Baker SP, Beauglehole AR. Bioorg. Med. Chem. 1998; 6: 1517
  • 10 Sun Y.-Y, Liao J.-H, Fang J.-M, Chou P.-T, Shen C.-H, Hsu C.-W, Chen L.-C. Org. Lett. 2006; 8: 3713
  • 11 Zambare AS, Kalam Khan FA, Zambare SP, Shinde SD, Sangshetti JN. Curr. Org. Chem. 2016; 20: 798
  • 12 Vekariya RH, Patel HD. Synth. Commun. 2014; 44: 2756
    • 13a Szwaczko K. Inorganics 2022; 10: 23
    • 13b Lončarić M, Gašo-Sokač D, Jokić S, Molnar M. Biomolecules 2020; 10: 151
    • 14a Rusnak OV, Lytvyn RZ, Skripskaya OV, Blinder OO, Pitkovych KhE, Yagodinets PI, Obushak MD. Pharm. Chem. J. 2019; 53: 797
    • 14b Srivastava N, Kumar KS. A, Sinha S, Srivastava R, Dikshit DK. Anti-Infect. Agents 2012; 10: 6
    • 14c Rathnam MV, Thatte CS, Pise AC. Asian J. Chem. 2010; 22: 6092
    • 14d Kirkiacharian S, Bigou A, Bakhchinian R. FR 2849653, 2004
    • 14e Whittingham WG, Aspinall MB, Worthington PA, Clarke ED, Dinh PM, Valancogne IA, May LF. WO 02/28183A1, 2002
    • 14f Holton GW, Parker G, Robertson A. J. Chem. Soc. 1949; 2049
    • 14g Das DK, Sarkar S, Khan M, Belal M, Khan AT. Tetrahedron Lett. 2014; 55: 4869
    • 14h Gao W.-C, Liu T, Zhang B, Li X, Wei W.-L, Liu Q, Tian J, Chang H.-H. J. Org. Chem. 2016; 81: 11297
    • 14i Wei W, Wen J, Yang D, Guo M, Wang Y, You J, Wang H. Chem. Commun. 2015; 51: 768
    • 15a Bailly F, Maurin C, Teissier E, Vezin H, Cotelle P. Bioorg. Med. Chem. 2004; 12: 5611
    • 15b Takadate A, Masuda T, Murata C, Shibuya M, Isobe A. Chem. Pharm. Bull. 2000; 48: 256
    • 15c Kadhum AA. H, Mohamad AB, Al-Amiery AA, Takriff MS. Molecules 2011; 16: 6969
    • 16a Chiummiento L, D’Orsi R, Funicello M, Lupattelli P. Molecules 2020; 25: 2327
    • 16b More KR. J. Chem. Pharm. Res. 2017; 9: 210
    • 16c Heravi MM, Zadsirjan V, Hamidi H, Tabar Amiri PH. RSC Adv. 2017; 7: 24470
    • 17a Rong Z, Gao K, Zhou L, Lin J, Qian G. RSC Adv. 2019; 9: 17975
    • 17b Alonso-Marañón L, Martínez MM, Sarandeses LA, Gómez-Bengoa E, Pérez Sestelo J. J. Org. Chem. 2018; 83: 7970
    • 17c Fürstner A, Davies PW. J. Am. Chem. Soc. 2005; 127: 15024
    • 18a Sharma U, Naveen T, Maji A, Manna S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 12669
    • 18b Wang S, Li P, Yu L, Wang L. Org. Lett. 2011; 13: 5968
    • 18c Honey MA, Blake AJ, Campbell IB, Judkins BD, Moody CJ. Tetrahedron 2009; 65: 8995
  • 19 Guo X, Yu R, Li H, Li Z. J. Am. Chem. Soc. 2009; 131: 17387
  • 20 Arias L, Vara Y, Cossío FP. J. Org. Chem. 2012; 77: 266
    • 21a Moriarty RM, Vaid RK, Ravikumar VT, Vaid BK, Hopkins TE. Tetrahedron 1988; 44: 1603
    • 21b Jeso V, Micalizio GC. J. Am. Chem. Soc. 2010; 132: 11422
    • 22a Jung J.-W, Kim N.-J, Yun H, Han YT. Molecules 2018; 23: 2417
    • 22b Daru J, Stirling A. J. Org. Chem. 2011; 76: 8749 ; and references cited therein
  • 23 The structure of benzofuran 4a was determined by 2D NMR and HRMS (for details, see the Supporting Information).
  • 24 Zhou H, Shu K, Fang J, Zhang L, Song X, Yu Z, Wu X, Liu H. CN 111004121, 2020
  • 25 HClO4 in 1,4-dioxane (0.1 M) was used from Hayashi Pure Chemical.
  • 26 Silica gel was used from Kanto Chemical Co. (Silica gel 60N, spherical, neutral, 40–50 (µm).
  • 27 Yonezawa N, Hino T, Shimizu M, Matsuda K, Ikeda T. J. Org. Chem. 1999; 64: 4179
  • 28 α-Phenoxyacetophenone is used alone in benzofuran synthesis, which proceeds by intramolecular cyclization, see: Ma Z, Zhou M, Ma L, Zhang M. J. Chem. Res. 2020; 44: 426