Synlett 2023; 34(14): 1719-1722
DOI: 10.1055/s-0042-1752656
letter

A Unified Approach to Mono- and 2,3-Disubstituted N–H Indoles

Ju Hee Kim
a   Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, R. of Korea
,
Sun A Lee
a   Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, R. of Korea
,
Tae Sik Jeon
a   Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, R. of Korea
,
Jin Kun Cha
b   Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
,
Young Gyu Kim
a   Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, R. of Korea
› Author Affiliations
We thank Samsung Electronics and Samsung Electro-Mechanics (BK-21 program, Y.G.K.) and the National Science Foundation (CHE-2203224, J.K.C.) for generous financial support.


Abstract

A unified approach to mono- and disubstituted N–H indoles is described by means of oxidative cyclization of 2-alkenyl anilines, which are prepared by cross-coupling of the corresponding o-bromoanilines. This procedure is operationally expedient and tolerant of common functional groups to allow regiospecific installation of the alkyl and aryl substituents.

Supporting Information



Publication History

Received: 29 January 2023

Accepted after revision: 06 March 2023

Article published online:
29 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • Recent reviews:
    • 1a Gribble GW. J. Chem. Soc., Perkin Trans 1 2000; 1045
    • 1b Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 1c Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1d Inman M, Moody C. J. Chem. Sci. 2013; 4: 29
    • 1e Bugaenko DI, Karchava AV, Yurovskaya MA. Russ. Chem. Rev. 2019; 88: 99

      Recent examples:
    • 2a Li Y.-L, Li J, Ma A.-L, Huang Y.-N, Deng J. J. Org. Chem. 2015; 80: 3841
    • 2b Ortgies S, Breder A. Org. Lett. 2015; 17: 2748
    • 2c Yu W, Du Y, Zhao K. Org. Lett. 2009; 11: 2417
    • 2d Mancuso R, Dalpozzo R. Catalysts 2018; 8: 458
    • 4a Andries-Ulmer A, Brunner C, Rehbein J, Gulder T. J. Am. Chem. Soc. 2018; 140: 13034
    • 4b Deng T, Mazumdar W, Ford RL, Jana N, Izar R, Wink DJ, Driver TG. J. Am. Chem. Soc. 2020; 142: 4456
    • 4c Xia H.-D, Zhang Y.-D, Wang Y.-H, Zhang C. Org. Lett. 2018; 20: 4052
    • 4d Jang YH, Youn SW. Org. Lett. 2014; 16: 3720
    • 4e Stokes BJ, Liu S, Driver TG. J. Am. Chem. Soc. 2011; 133: 4702
    • 4f Fra L, Millán A, Souto JA, Muñiz K. Angew. Chem. Int. Ed. 2014; 53: 7349

      For representative syntheses of indole alkaloids, see inter alia:
    • 5a Kozmin SA, Iwama T, Huang Y, Rawal VH. J. Am. Chem. Soc. 2002; 124: 4628
    • 5b Sears JE, Boger DL. Acc. Chem. Res. 2015; 48: 653
    • 5c Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
    • 5d Johnson RE, Ree H, Hartman M, Lang L, Sawano S, Sarpong R. J. Am. Chem. Soc. 2019; 141: 2233

      Prepared by the Suzuki–Miyaura coupling reaction of 2-iodoaniline and cyclohexenylboronic acid pinacol ester in 97% yield:
    • 6a Miura Y, Nishi T, Teki Y. J. Org. Chem. 2003; 68: 10158
    • 6b Fan H, Pan P, Zhang Y, Wang W. Org. Lett. 2018; 20: 7929
    • 6c Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562

      Similarly, other 2-alkenylaniline substrates were prepared by the Suzuki–Miyaura or Stille coupling reactions, see:
    • 7a Pereira S, Srebnik M. Organometallics 1995; 14: 3127
    • 7b Takagi J, Takahashi K, Ishiyama T, Miyaura N. J. Am. Chem. Soc. 2002; 124: 8001
    • 7c Moure AL, Arrayás RG, Cárdenas DJ, Alonso I, Carretero JC. J. Am. Chem. Soc. 2012; 134: 7219
    • 7d Alami M, Hamze A, Provot O. ACS Catal. 2019; 9: 3437
    • 7e Rubin M, Trofimov A, Gevorgyan V. J. Am. Chem. Soc. 2005; 127: 10243
  • 8 We thank Assia Chebieb and Dr. Mahesh Sandakonda for carrying out studies in Table 2.

    • One example of the indole synthesis by the same procedure (with PIFA) was reported to afford 4b in 78% yield. Interestingly, the corresponding cyclization of 1g was reported to provide traces of 2g:
    • 9a Wu M, Yan R. Synlett 2017; 28: 729

    • Indoles 4a and 4b were synthesized by using persulfate as oxidant in 54% and 73% yield, respectively, and the intermediacy of an amine radical cation was proposed, see:
    • 9b Wang M, Li Y, Wu Q.-A, Luo S, Li Y. Synthesis 2019; 51: 3085
  • 10 For example, see: Wang L, Gu X, Fang L, Li Z, Hu S, Wang F. Eur. J. Org. Chem. 2016; 5494
    • 11a Castro CE, Gaughan EJ, Owsley DC. J. Org. Chem. 1966; 31: 4071
    • 11b Sakai N, Annaka K, Fujita A, Sato A, Konakahara T. J. Org. Chem. 2008; 73: 4160
    • 11c Okuma K, Seto J.-i, Sakaguchi K.-i, Ozaki S, Nagahora N, Shioji K. Tetrahedron Lett. 2009; 50: 2943
    • 12a Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
    • 12b Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996

      For the intermediacy of metal nitrenoids, see:
    • 13a Alt IT, Plietker B. Angew. Chem. Int. Ed. 2016; 55: 1519
    • 13b Plietker B, Röske A. Catal. Sci. Technol. 2019; 9: 4188
  • 14 Neither TFA nor 4 Å MS, which was employed for related reactions (ref. 4b and 4a, respectively), was necessary for this indole formation.