Semin Musculoskelet Radiol 2022; 26(04): 453-468
DOI: 10.1055/s-0042-1753506
Review Article

Tumors of the Spine: When Can Biopsy Be Avoided?

1   Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
,
2   Diagnostic and Interventional Radiology, The Rizzoli Orthopedic Institute, Bologna, Italy
,
3   Department of Biomedical Imaging and Image Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Vienna, Austria
› Author Affiliations

Abstract

Regarding osseous tumors of the spine, characteristic morphology is encountered in hemangioma of the vertebral body, osteoid osteoma (OO), osteochondroma, Paget's disease, and bone islands. In these cases, radiologic imaging can make a specific diagnosis and thereby avoid biopsy, especially when the radiologist has chosen the correct imaging modality to establish the diagnosis, such as thin-slice computed tomography in suspected OO. A benign lesion is suggested by a high amount of fat within the lesion, the lack of uptake of the contrast agent, and a homogeneous aspect without solid parts in a cystic tumor. Suspicion of malignancy should be raised in spinal lesions with a heterogeneous disordered matrix, distinct signal decrease in T1-weighted magnetic resonance imaging, blurred border, perilesional edema, cortex erosion, and a large soft tissue component. Biopsy is mandatory in presumed malignancy, such as any Lodwick grade II or III osteolytic lesion in the vertebral column. The radiologist plays a crucial role in determining the clinical pathway by choosing the imaging approach wisely, by narrowing the differential diagnosis list, and, when characteristic morphology is encountered, by avoiding unnecessary biopsies.



Publication History

Article published online:
14 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Albano D, Messina C, Gitto S, Papakonstantinou O, Sconfienza LM. Differential diagnosis of spine tumors: my favorite mistake. Semin Musculoskelet Radiol 2019; 23 (01) 26-35
  • 2 Orguc S, Arkun R. Primary tumors of the spine. Semin Musculoskelet Radiol 2014; 18 (03) 280-299
  • 3 Thawait SK, Marcus MA, Morrison WB, Klufas RA, Eng J, Carrino JA. Research synthesis: what is the diagnostic performance of magnetic resonance imaging to discriminate benign from malignant vertebral compression fractures? Systematic review and meta-analysis. Spine 2012; 37 (12) E736-E744
  • 4 Rimondi E, Rossi G, Bartalena T. et al. Percutaneous CT-guided biopsy of the musculoskeletal system: results of 2027 cases. Eur J Radiol 2011; 77 (01) 34-42
  • 5 Nouh MR, Abu Shady HM. Initial CT-guided needle biopsy of extremity skeletal lesions: diagnostic performance and experience of a tertiary musculoskeletal center. Eur J Radiol 2014; 83 (02) 360-365
  • 6 Wünnemann F, Rehnitz C, Weber MA. Incidental findings in musculoskeletal radiology. [in German]. Radiologe 2017; 57 (04) 286-295
  • 7 Laredo JD, Assouline E, Gelbert F, Wybier M, Merland JJ, Tubiana JM. Vertebral hemangiomas: fat content as a sign of aggressiveness. Radiology 1990; 177 (02) 467-472
  • 8 Gaudino S, Martucci M, Colantonio R. et al. A systematic approach to vertebral hemangioma. Skeletal Radiol 2015; 44 (01) 25-36
  • 9 Weber MA, Sprengel SD, Omlor GW. et al. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skeletal Radiol 2015; 44 (07) 981-993
  • 10 Beyer T, van Rijswijk CSP, Villagrán JM. et al. European multicentre study on technical success and long-term clinical outcome of radiofrequency ablation for the treatment of spinal osteoid osteomas and osteoblastomas. Neuroradiology 2019; 61 (08) 935-942
  • 11 Rehnitz C, Sprengel SD, Lehner B. et al. CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol 2012; 81 (11) 3426-3434
  • 12 Liu PT, Kujak JL, Roberts CC, de Chadarevian JP. The vascular groove sign: a new CT finding associated with osteoid osteomas. AJR Am J Roentgenol 2011; 196 (01) 168-173
  • 13 Davies M, Cassar-Pullicino VN, Davies AM, McCall IW, Tyrrell PN. The diagnostic accuracy of MR imaging in osteoid osteoma. Skeletal Radiol 2002; 31 (10) 559-569
  • 14 Gangi A, Alizadeh H, Wong L, Buy X, Dietemann JL, Roy C. Osteoid osteoma: percutaneous laser ablation and follow-up in 114 patients. Radiology 2007; 242 (01) 293-301
  • 15 Kostrzewa M, Henzler T, Schoenberg SO, Diehl SJ, Rathmann N. Clinical and quantitative MRI perfusion analysis of osteoid osteomas before and after microwave ablation. Anticancer Res 2019; 39 (06) 3053-3057
  • 16 Cazzato RL, Auloge P, Dalili D. et al. Percutaneous image-guided cryoablation of osteoblastoma. AJR Am J Roentgenol 2019; 213 (05) 1157-1162
  • 17 Napoli A, Bazzocchi A, Scipione R. et al. Noninvasive therapy for osteoid osteoma: a prospective developmental study with MR imaging-guided high-intensity focused ultrasound. Radiology 2017; 285 (01) 186-196
  • 18 Dalili D, Isaac A, Bazzocchi A. et al. Interventional techniques for bone and musculoskeletal soft tissue tumors: current practices and future directions—Part I. Ablation. Semin Musculoskelet Radiol 2020; 24 (06) 692-709
  • 19 Lalam R, Bloem JL, Noebauer-Huhmann IM. et al. ESSR Consensus document for detection, characterisation, and referral pathway for tumors and tumorlike lesions of bone. Semin Musculoskelet Radiol 2017; 21 (05) 630-647
  • 20 Cazzato RL, Garnon J, De Marini P. et al. French multidisciplinary approach for the treatment of MSK tumors. Semin Musculoskelet Radiol 2020; 24 (03) 310-322
  • 21 Lucas DR. Osteoblastoma. Arch Pathol Lab Med 2010; 134 (10) 1460-1466
  • 22 Papaioannou G, Sebire NJ, McHugh K. Imaging of the unusual pediatric ‘blastomas.’. Cancer Imaging 2009; 9: 1-11
  • 23 Jurik AG, Jørgensen PH, Mortensen MM. Whole-body MRI in assessing malignant transformation in multiple hereditary exostoses and enchondromatosis: audit results and literature review. Skeletal Radiol 2020; 49 (01) 115-124
  • 24 Rodallec MH, Feydy A, Larousserie F. et al. Diagnostic imaging of solitary tumors of the spine: what to do and say. Radiographics 2008; 28 (04) 1019-1041
  • 25 Kloth JK, Wolf M, Rehnitz C, Lehner B, Wiedenhöfer B, Weber MA. Radiological diagnostics of spinal tumors. Part 1: general tumor diagnostics and special diagnostics of extradural tumors. [in German]. Orthopade 2012; 41 (08) 595-607
  • 26 Murphey MD, Andrews CL, Flemming DJ, Temple HT, Smith WS, Smirniotopoulos JG. From the archives of the AFIP. Primary tumors of the spine: radiologic pathologic correlation. Radiographics 1996; 16 (05) 1131-1158
  • 27 Jakanani GC, Saifuddin A. Percutaneous image-guided needle biopsy of rib lesions: a retrospective study of diagnostic outcome in 51 cases. Skeletal Radiol 2013; 42 (01) 85-90
  • 28 Greenspan A. Bone island (enostosis): current concept—a review. Skeletal Radiol 1995; 24 (02) 111-115
  • 29 Greenspan A, Klein MJ. Giant bone island. Skeletal Radiol 1996; 25 (01) 67-69
  • 30 Kintzelé L, Weber MA. Imaging diagnostics in bone metastases. [in German]. Radiologe 2017; 57 (02) 113-128
  • 31 Isaac A, Lecouvet F, Dalili D. et al. Detection and characterization of musculoskeletal cancer using whole body magnetic resonance imaging. Semin Musculoskelet Radiol 2020; 24 (06) 726-750
  • 32 Isaac A, Dalili D, Dalili D, Weber MA. State-of-the-art imaging for diagnosis of metastatic bone disease. Radiologe 2020; 60 (Suppl. 01) 1-16
  • 33 Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ. From the radiologic pathology archives: Ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics 2013; 33 (03) 803-831
  • 34 Freyschmidt J, Ostertag H. Ewing's sarcoma, fibrogenic tumors, giant cell tumor, hemangioma of bone: radiology and pathology. [in German]. Radiologe 2016; 56 (06) 520-535
  • 35 McCarville MB, Chen JY, Coleman JL. et al. Distinguishing osteomyelitis from Ewing sarcoma on radiography and MRI. AJR Am J Roentgenol 2015; 205 (03) 640-650 ; quiz 651
  • 36 Ilaslan H, Sundaram M, Unni KK, Dekutoski MB. Primary Ewing's sarcoma of the vertebral column. Skeletal Radiol 2004; 33 (09) 506-513
  • 37 Jordanov MI, Block JJ, Gonzalez AL, Green NE. Transarticular spread of Ewing sarcoma mimicking septic arthritis. Pediatr Radiol 2009; 39 (04) 381-384
  • 38 Weber MA, Papakonstantinou O, Nikodinovska VV, Vanhoenacker FM. Ewing's sarcoma and primary osseous lymphoma: spectrum of imaging appearances. Semin Musculoskelet Radiol 2019; 23 (01) 36-57
  • 39 AWMF guideline: Ewing's sarcoma (in children and adolescents) of the German Society of Pediatric and Adolescent Medicine (DGKJ). Accessed May 31, 2022 at: https://www.awmf.org/uploads/tx_szleitlinien/025-006l_S1_Ewing-Sarkom-Kinder_-Jugendliche_2022-02_01.pdf
  • 40 Ludwig K. Musculoskeletal lymphomas. [in German]. Radiologe 2002; 42 (12) 988-992
  • 41 Navarro SM, Matcuk GR, Patel DB. et al. Musculoskeletal imaging findings of hematologic malignancies. Radiographics 2017; 37 (03) 881-900
  • 42 Krishnan A, Shirkhoda A, Tehranzadeh J, Armin AR, Irwin R, Les K. Primary bone lymphoma: radiographic-MR imaging correlation. Radiographics 2003; 23 (06) 1371-1383 ; discussion 1384–1387
  • 43 Chang CY, Huang AJ, Bredella MA. et al. Percutaneous CT-guided needle biopsies of musculoskeletal tumors: a 5-year analysis of non-diagnostic biopsies. Skeletal Radiol 2015; 44 (12) 1795-1803
  • 44 Weber MA, Baur-Melnyk A. Radiological diagnosis of multiple myeloma: Role of imaging and the current S3 guideline. [in German]. Radiologe 2022; 62 (01) 35-43
  • 45 Wennmann M, Kintzelé L, Piraud M. et al. Volumetry based biomarker speed of growth: Quantifying the change of total tumor volume in whole-body magnetic resonance imaging over time improves risk stratification of smoldering multiple myeloma patients. Oncotarget 2018; 9 (38) 25254-25264
  • 46 Wennmann M, Hielscher T, Kintzelé L. et al. Analyzing longitudinal wb-MRI data and clinical course in a cohort of former smoldering multiple myeloma patients: connections between MRI findings and clinical progression patterns. Cancers (Basel) 2021; 13 (05) 961
  • 47 Rasche L, Chavan SS, Stephens OW. et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun 2017; 8 (01) 268
  • 48 Major NM, Helms CA, Richardson WJ. The “mini brain”: plasmacytoma in a vertebral body on MR imaging. AJR Am J Roentgenol 2000; 175 (01) 261-263
  • 49 Andreula C, Murrone M, Algra PR. Metastatic disease of the spine. In: Goethem JWM, Hauwe L, Parizel PM. eds. Spinal Imaging. Berlin/Heidelberg, Germany: Springer; 2007: 461-474
  • 50 Jung HS, Jee WH, McCauley TR, Ha KY, Choi KH. Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging. Radiographics 2003; 23 (01) 179-187
  • 51 Cicala D, Briganti F, Casale L. et al. Atraumatic vertebral compression fractures: differential diagnosis between benign osteoporotic and malignant fractures by MRI. Musculoskelet Surg 2013; 97 (Suppl. 02) S169-S179
  • 52 Geith T, Reiser M, Baur-Melnyk A. Differentiation between acute osteoporotic and metastatic vertebral body fractures by imaging. [in German]. Unfallchirurg 2015; 118 (03) 222-229
  • 53 Mauch JT, Carr CM, Cloft H, Diehn FE. Review of the imaging features of benign osteoporotic and malignant vertebral compression fractures. AJNR Am J Neuroradiol 2018; 39 (09) 1584-1592
  • 54 Wu JS, Goldsmith JD, Horwich PJ, Shetty SK, Hochman MG. Bone and soft-tissue lesions: what factors affect diagnostic yield of image-guided core-needle biopsy?. Radiology 2008; 248 (03) 962-970
  • 55 Virayavanich W, Ringler MD, Chin CT. et al. CT-guided biopsy of bone and soft-tissue lesions: role of on-site immediate cytologic evaluation. J Vasc Interv Radiol 2011; 22 (07) 1024-1030
  • 56 Li Y, Du Y, Luo TY. et al. Factors influencing diagnostic yield of CT-guided percutaneous core needle biopsy for bone lesions. Clin Radiol 2014; 69 (01) e43-e47
  • 57 Yang SY, Oh E, Kwon JW, Kim HS. Percutaneous image-guided spinal lesion biopsies: factors affecting higher diagnostic yield. AJR Am J Roentgenol 2018; 211 (05) 1068-1074
  • 58 Park SK, Lee IS, Choi JY. et al. CT and MRI of fibrous dysplasia of the spine. Br J Radiol 2012; 85 (1015): 996-1001
  • 59 Zhang Y, Zhang C, Wang S, Wang H, Zhu Y, Hao D. Computed tomography and magnetic resonance imaging manifestations of spinal monostotic fibrous dysplasia. J Clin Imaging Sci 2018; 8: 23
  • 60 Boudabbous S, Paulin EN, Delattre BMA, Hamard M, Vargas MI. Spinal disorders mimicking infection. Insights Imaging 2021; 12 (01) 176
  • 61 Ledermann HP, Schweitzer ME, Morrison WB, Carrino JA. MR imaging findings in spinal infections: rules or myths?. Radiology 2003; 228 (02) 506-514
  • 62 Braun A, Germann T, Wünnemann F. et al. Impact of MRI, CT, and clinical characteristics on microbial pathogen detection using CT-guided biopsy for suspected spondylodiscitis. J Clin Med 2019; 9 (01) 32
  • 63 Rehm J, Veith S, Akbar M, Kauczor HU, Weber MA. CT-guided percutaneous spine biopsy in suspected infection or malignancy: a study of 214 patients. Fortschr Röntgenstr 2016; 188 (12) 1156-1162
  • 64 Spira D, Germann T, Lehner B. et al. CT-guided biopsy in suspected spondylodiscitis—the association of paravertebral inflammation with microbial pathogen detection. PLoS One 2016; 11 (01) e0146399
  • 65 Bonar SF, Watson G, Gragnaniello C, Seex K, Magnussen J, Earwaker J. Intraosseous hibernoma: characterization of five cases and literature review. Skeletal Radiol 2014; 43 (07) 939-946
  • 66 Kyriakos M. Benign notochordal lesions of the axial skeleton: a review and current appraisal. Skeletal Radiol 2011; 40 (09) 1141-1152
  • 67 Nishiguchi T, Mochizuki K, Ohsawa M. et al. Differentiating benign notochordal cell tumors from chordomas: radiographic features on MRI, CT, and tomography. AJR Am J Roentgenol 2011; 196 (03) 644-650
  • 68 Iorgulescu JB, Laufer I, Hameed M. et al. Benign notochordal cell tumors of the spine: natural history of 8 patients with histologically confirmed lesions. Neurosurgery 2013; 73 (03) 411-416
  • 69 Ishida T, Dorfman HD, Steiner GC, Norman A. Cystic angiomatosis of bone with sclerotic changes mimicking osteoblastic metastases. Skeletal Radiol 1994; 23 (04) 247-252
  • 70 Boyse TD, Jacobson JA. Case 45: cystic angiomatosis. Radiology 2002; 223 (01) 164-167
  • 71 Vanhoenacker FM, Schepper AM, Raeve H, Berneman Z. Cystic angiomatosis with splenic involvement: unusual MRI findings. Eur Radiol 2003; 13 (Suppl. 06) L35-L39