Planta Med 2017; 83(06): 496-508
DOI: 10.1055/s-0043-100934
Reviews
Georg Thieme Verlag KG Stuttgart · New York

An Appraisal of Drug-Drug Interactions with Green Tea (Camellia sinensis)

Ahmed A. Albassam
1   Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
,
John S. Markowitz
2   Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, Florida, USA
3   Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA
› Author Affiliations
Further Information

Publication History

received 28 October 2016
revised 28 December 2016

accepted 10 January 2017

Publication Date:
24 January 2017 (online)

Abstract

This review summarizes published in vitro, animal, and clinical studies investigating the effects of green tea (Camellia sinensis) extract and associated catechins on drug-metabolizing enzymes and drug transporters. In vitro studies suggest that green tea extract and its main catechin, (−)-epigallocatechin-3-gallate, to varying degrees, inhibit the activity of CYP1A1, CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2D6, and CYP3A4. UGT1A1 and UGT1A4 isoforms were also inhibited by (−)-epigallocatechin-3-gallate. Animal studies suggest green tea extract and/or (−)-epigallocatechin-3-gallate significantly increase the bioavailability of diltazem, verapamil, tamoxifen simvastatin, 5-fluorouracil, and nicardipine. Conversely, green tea extract and/or (−)-epigallocatechin-3-gallate reduce the bioavailability of quetiapine, sunitinib, clozapine, and nadolol. Of the few clinical studies available for review, it appears neither green tea extract nor (−)-epigallocatechin-3-gallate inhibit any major cytochrome P450 enzyme. Regarding drug transporters, in vitro studies indicate P-glycoprotein, organic anion transporting polypeptide 1A1, organic anion transporting polypeptide 1B1, organic anion transporting polypeptide 1B3, organic anion transporting polypeptide 2B1, organic cation transporter 1, organic cation transporter 2, multidrug and toxin extrusion 1, and multidrug and toxin extrusion 2-K are potentially inhibited by green tea extract. A clinical study indicates the organic anion transporting polypeptide 1A1 transporter is inhibited by (−)-epigallocatechin-3-gallate while P-glycoprotein is unaffected. In conclusion, the ingestion of green tea extract or its associated catechins is not expected to result in clinically significant influences on major cytochrome P450 or uridine 5′-diphospho-glucuronosyltransferase enzyme substrates or drugs serving as substrates of P-glycoprotein. However, some caution is advised in the consumption of significant amounts of green tea beverages or green tea extract in patients prescribed known substrates of organic anion transporting polypeptide, particularly those with a narrow therapeutic index.

 
  • References

  • 1 Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992; 21: 334-350
  • 2 Lin LZ, Chen P, Harnly JM. New phenolic components and chromatographic profiles of green and fermented teas. J Agric Food Chem 2008; 56: 8130-8140
  • 3 Xu JZ, Yeung SYV, Chang Q, Huang Y, Chen ZY. Comparison of antioxidant activity and bioavailability of tea epicatechins with their epimers. Br J Nutr 2004; 91: 873-881
  • 4 Lin JK, Lin CL, Liang YC, Lin-Shiau SY, Juan IM. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J Agric Food Chem 1998; 46: 3635-3642
  • 5 Gormaz JG, Valls N, Sotomayor C, Turner T, Rodrigo R. Potential role of polyphenols in the prevention of cardiovascular diseases: molecular bases. Curr Med Chem 2016; 23: 115-128
  • 6 McKenna DJ, Hughes K, Jones K. Green tea monograph. Altern Ther Health Med 2000; 6: 61-68 70–72, 74 passim
  • 7 Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 2006; 67: 1849-1855
  • 8 Wang H, Wen Y, Du Y, Yan X, Guo H, Rycroft JA, Boon N, Kovacs EMR, Mela DJ. Effects of catechin enriched green tea on body composition. Obesity (Silver Spring) 2010; 18: 773-779
  • 9 Liu K, Zhou R, Wang B, Chen K, Shi LY, Zhu JD, Mi MT. Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. Am J Clin Nutr 2013; 98: 340-348
  • 10 Nagao T, Hase T, Tokimitsu I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity (Silver Spring) 2007; 15: 1473-1483
  • 11 Gurley BJ, Fifer EK, Gardner Z. Pharmacokinetic herb-drug interactions (part 2): drug interactions involving popular botanical dietary supplements and their clinical relevance. Planta Med 2012; 78: 1490-1514
  • 12 Muto S, Fujita K, Yamazaki Y, Kamataki T. Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450. Mutat Res 2001; 479: 197-206
  • 13 Nishikawa M, Ariyoshi N, Kotani A, Ishii I, Nakamura H, Nakasa H, Ida M, Kimura N, Kimura M, Hasegawa A, Kusu F, Ohmori S, Nakazawa K, Kitada M. Effects of continuous ingestion of green tea or grape seed extracts on the pharmacokinetics of midazolam. Drug Metab Pharmacokinet 2004; 19: 280-289
  • 14 Mirkov S, Komoroski BJ, Ramírez J, Graber AY, Ratain MJ, Strom SC, Innocenti F. Effects of green tea compounds on irinotecan metabolism. Drug Metab Dispos 2007; 35: 228-233
  • 15 Misaka S, Kawabe K, Onoue S, Werba JP, Giroli M, Tamaki S, Kan T, Kimura J, Watanabe H, Yamada S. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes. Drug Metab Pharmacokinet 2013; 28: 244-249
  • 16 Netsch MI, Gutmann H, Schmidlin CB, Aydogan C, Drewe J. Induction of CYP1A by green tea extract in human intestinal cell lines. Planta Med 2006; 72: 514-520
  • 17 Satoh T, Fujisawa H, Nakamura A, Takahashi N, Watanabe K. Inhibitory effects of eight green tea catechins on cytochrome P450. J Pharm Pharm Sci 2016; 19: 188-197
  • 18 Mohamed ME, Frye RF. Inhibitory effects of commonly used herbal extracts on UDP-glucuronosyltransferase 1A4, 1A6, and 1A9 enzyme activities. Drug Metab Dispos 2011; 39: 1522-1528
  • 19 Mohamed MF, Tseng T, Frye RF. Inhibitory effects of commonly used herbal extracts on UGT1A1 enzyme activity. Xenobiotica 2010; 40: 663-669
  • 20 Fuchikami H, Satoh H, Tsujimoto M, Ohdo S, Ohtani H, Sawada Y. Effects of herbal extracts on the function of human organic anion-transporting polypeptide OATP-B. Drug Metab Dispos 2006; 34: 577-582
  • 21 Roth M, Timmermann BN, Hagenbuch B. Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metab Dispos 2011; 39: 920-926
  • 22 Misaka S, Yatabe J, Müller F, Takano K, Kawabe K, Glaeser H, Yatabe MS, Onoue S, Werba JP, Watanabe H. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin Pharmacol Ther 2014; 95: 432-438
  • 23 Netsch MI, Gutmann H, Luescher S, Brill S, Schmidlin CB, Kreuter MH, Drewe J. Inhibitory activity of a green tea extract and some of its constituents on multidrug resistance-associated protein 2 functionality. Planta Med 2005; 71: 135-141
  • 24 Jodoin J, Demeule M, Béliveau R. Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols. Biochim Biophys Acta 2002; 1542: 149-159
  • 25 Knop J, Misaka S, Singer K, Hoier E, Muller F, Glaeser H, Konig J, Fromm MF. Inhibitory effects of green tea and (−)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One 2015; 10: e0139370
  • 26 Jaiyen C, Jutabha P, Anzai N, Lungkaphin A, Soodvilai S, Srimaroeng C. Interaction of green tea catechins with renal organic cation transporter 2. Xenobiotica 2015; 46: 1-10
  • 27 Ge J, Tan BX, Chen Y, Yang L, Peng XC, Li HZ, Lin HJ, Zhao Y, Wei M, Cheng K, Li LH, Dong H, Gao F, He JP, Wu Y, Qiu M, Zhao YL, Su JM, Hou JM, Liu JY. Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability. J Mol Med (Berl) 2011; 89: 595-602
  • 28 Li C, Choi JS. Effects of epigallocatechin gallate on the bioavailability and pharmacokinetics of diltiazem in rats. Pharmazie 2008; 63: 815-818
  • 29 Chung JH, Choi DH, Choi JS. Effects of oral epigallocatechin gallate on the oral pharmacokinetics of verapamil in rats. Biopharm Drug Dispos 2009; 30: 90-93
  • 30 Choi JS, Burm JP. Effects of oral epigallocatechin gallate on the pharmacokinetics of nicardipine in rats. Arch Pharm Res 2009; 32: 1721-1725
  • 31 Qiao J, Gu C, Shang W, Du J, Yin W, Zhu M, Wang W, Han M, Lu W. Effect of green tea on pharmacokinetics of 5-fluorouracil in rats and pharmacodynamics in human cell lines in vitro . Food Chem Toxicol 2011; 49: 1410-1415
  • 32 Jang EH, Choi JY, Park CS, Lee SK, Kim CE, Park HJ, Kang JS, Lee JW, Kang JH. Effects of green tea extract administration on the pharmacokinetics of clozapine in rats. J Pharm Pharmacol 2005; 57: 311-316
  • 33 Li C, Lim SC, Kim J, Choi JS. Effects of myricetin, an anticancer compound, on the bioavailability and pharmacokinetics of tamoxifen and its main metabolite, 4-hydroxytamoxifen, in rats. Eur J Drug Metab Pharmacokinet 2011; 36: 175-182
  • 34 Misaka S, Miyazaki N, Fukushima T, Yamada S, Kimura J. Effects of green tea extract and (−)-epigallocatechin-3-gallate on pharmacokinetics of nadolol in rats. Phytomedicine 2013; 20: 1247-1250
  • 35 Misaka S, Kawabe K, Onoue S, Werba JP, Giroli M, Watanabe H, Yamada S. Green tea extract affects the cytochrome P450 3A activity and pharmacokinetics of simvastatin in rats. Drug Metab Pharmacokinet 2013; 28: 514-518
  • 36 Ezzeldin E, Asiri YA, Iqbal M. Effects of green tea extracts on the pharmacokinetics of quetiapine in rats. Evid Based Complement Alternat Med 2015; 2015: 615285
  • 37 Chow HH, Hakim IA, Vining DR, Crowell JA, Cordova CA, Chew WM, Xu MJ, Hsu CH, Ranger-Moore J, Alberts DS. Effects of repeated green tea catechin administration on human cytochrome P450 activity. Cancer Epidemiol Biomarkers Prev 2006; 15: 2473-2476
  • 38 Donovan JL, Chavin KD, Devane CL, Taylor RM, Wang JS, Ruan Y, Markowitz JS. Green tea (Camellia sinensis) extract does not alter cytochrome p450 3A4 or 2D6 activity in healthy volunteers. Drug Metab Dispos 2004; 32: 906-908
  • 39 Ullmann U, Haller J, Bakker GCM, Brink EJ, Weber P. Epigallocatechin gallate (EGCG) (TEAVIGOTM) does not impair nonhaem-iron absorption in man. Phytomedicine 2005; 12: 410-415
  • 40 Alemdaroglu NC, Dietz U, Wolffram S, Spahn-Langguth H, Langguth P. Influence of green and black tea on folic acid pharmacokinetics in healthy volunteers: potential risk of diminished folic acid bioavailability. Biopharm Drug Dispos 2008; 29: 335-348
  • 41 Markowitz JS, Zhu HJ. Limitations of in vitro assessments of the drug interaction potential of botanical supplements. Planta Med 2012; 78: 1421-1427
  • 42 Van Amelsvoort JM, Van Hof KH, Mathot JN, Mulder TP, Wiersma A, Tijburg LB. Plasma concentrations of individual tea catechins after a single oral dose in humans. Xenobiotica 2001; 31: 891-901
  • 43 Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, Schantz SP. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 1998; 7: 351-354
  • 44 Rowland A, Miners JO, Mackenzie PI. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013; 45: 1121-1132
  • 45 Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 2004; 32: 1201-1208
  • 46 Lu H, Meng X, Li C, Sang S, Patten C, Sheng S, Hong J, Bai N, Winnik B, Ho CT, Yang CS. Glucuronides of tea catechins: enzymology of biosynthesis and biological activities. Drug Metab Dispos 2003; 31: 452-461
  • 47 Jinno H, Tanaka-Kagawa T, Hanioka N, Saeki M, Ishida S, Nishimura T, Ando M, Saito Y, Ozawa S, Sawada JI. Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38), an active metabolite of irinotecan (CPT-11), by human UGT1A1 variants, G71R, P229Q, and Y486D. Drug Metab Dispos 2003; 31: 108-113
  • 48 Molassiotis A, Fernadez-Ortega P, Pud D, Ozden G, Scott JA, Panteli V, Margulies A, Browall M, Magri M, Selvekerova S, Madsen E, Milovics L, Bruyns I, Gudmundsdottir G, Hummerston S, Ahmad AM, Platin N, Kearney N, Patiraki E. Use of complementary and alternative medicine in cancer patients: a European survey. Ann Oncol 2005; 16: 655-663
  • 49 Edge SC, Markowitz JS, Devane CL. Clozapine drug-drug interactions: a review of the literature. Hum Psychopharmacol 1997; 12: 5-20
  • 50 Gurley BJ, Markowitz JS, Williams DK, Barone GW. Practical considerations when designing and conducting clinical pharmacokinetic herb–drug interaction studies. Int J Pharmacokinet 2016; DOI: 10.4155/ipk-2016-0009.
  • 51 Ide K, Park M, Yamada H. The effect of green tea with exceptionally high catechin content on nadolol plasma concentration. Clin Pharmacol Ther 2014; 95: 588
  • 52 Nakagawa S, Hoshi T, Kubo A, Yamato S. Determination of tea polyphenols in bottled Japanese tea drinks and differences in polyphenol content in tea leaves from different variety. Bunseki Kagaku 2013; 62: 51-55