Aktuelle Neurologie 2017; 44(03): 161-169
DOI: 10.1055/s-0043-101424
Leitlinie
© Georg Thieme Verlag KG Stuttgart · New York

Frühsommer-Meningoenzephalitis (FSME)[*]

Tick-Borne Encephalitis
Reinhard Kaiser
1   Neurologische Klinik, Klinikum Pforzheim
,
Juan-Jose Archelos-Garcia
2   Klinische Abteilung für allgemeine Neurologie, Universitätsklinik Graz, Österreich
,
Wolfgang Jilg
3   Institut für Med. Mikrobiologie und Hygiene, Universität Regensburg
,
Sebastian Rauer
4   Neurologische Klinik, Universität Freiburg
,
Mathias Sturzenegger
5   Neurologische Universitätsklinik, Inselspital, Bern, Schweiz
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
25. April 2017 (online)

Zusammenfassung

Die Frühsommer-Meningoenzephalitis (FSME) ist eine durch ein gleichnamiges Virus verursachte akute Entzündung des Nervensystems. Reservoir für die FSME-Viren sind Kleintiernager des Waldes und der Wiesen und selten auch Ziegen, was die räumliche Begrenzung von Endemiegebieten erklärt („Naturherde“). Die FSME-Viren werden hauptsächlich durch Zecken übertragen, gelegentlich aber auch durch Produkte aus nicht pasteurisierter Ziegenmilch. Infektionen können das gesamte Jahr über erfolgen, die meisten Erkrankungen treten jedoch in den Hochsommermonaten auf. Mehr als 90 % der Infektionen erfolgen während der Freizeit. Dennoch ist die FSME eine typische Berufserkrankung von Land- und Forstwirten. Bei ca. 70 % der Patienten manifestiert sich die FSME mit einem zweigipfligen Fieberverlauf.

Nach einer Inkubationszeit von 5 – 28 Tagen entwickeln die Patienten zunächst ein allgemeines Krankheitsgefühl, Kopfschmerzen und Fieber (Prodromalphase). Nach vorübergehender Besserung markiert dann ein erneuter Fieberanstieg wenige Tage später den Beginn der zweiten Krankheitsphase. Diese manifestiert sich in ca. 50 % der Fälle als isolierte Meningitis, in 40 % als Meningoenzephalitis und in 10 % als Meningoenzephalomyelitis. Häufig finden sich quantitative und qualitative Bewusstseinsstörungen und eine Ataxie. Das frühzeitige Auftreten von Schluck- und Sprechstörungen, Lähmungen der Gesichts- und Halsmuskulatur sowie einer Atemlähmung weist auf eine ungünstige Prognose hin. Die FSME verläuft bei Kindern und Jugendlichen häufig unspezifisch mit den Symptomen eines grippalen Infektes und somit gutartiger als bei Erwachsenen. Mit zunehmendem Alter ist nicht nur der Verlauf gravierender, auch steigt die Zahl der Defektheilungen.

Die Diagnose basiert auf der Anamnese mit Aufenthalten in einem Risikogebiet, der neurologischen Symptomatik mit deutlicher Beeinträchtigung des Allgemeinbefindens, dem positiven Nachweis von FSME-spezifischen IgM- und IgG-Antikörpern im Blut und einer Pleozytose im Liquor. Es existiert keine kausale Therapie, die Behandlung erfolgt symptomatisch. Vor der Erkrankung kann man sich durch eine aktive Immunisierung gut schützen. Die Impfung wird allen Personen empfohlen, die sich wiederholt in einem Risikogebiet aufhalten.

Abstract

Tick-borne encephalitis (TBE) is an acute inflammation of the nervous system caused by a virus of the same name. Reservoirs for the TBE viruses are small rodents of the forest and meadows and rarely also goats, which explains the spatial limitation to endemic areas (“natural foci”). TBE virus is transmitted mainly by ticks, but occasionally also by products from non-pasteurized goatʼs milk. Infections can occur throughout the year, but most of the diseases present during the high summer months.

More than 90 % of infections occur during leisure time. However, it is a typical occupational disease for farmers and foresters. In approximately 70 % of the patients, TBE manifests itself with a two-phase fever course. After an incubation period of 5 – 28 days, the patients first develop a general feeling of illness, headaches and fever (prodromal phase). After a temporary improvement, a new episode of fever marks the beginning of the second phase of the disease a few days later. This is manifested in about 50 % of the cases as isolated meningitis, in 40 % as meningoencephalitis and in 10 % as meningoencephalomyelitis. Frequently, there are quantitative and qualitative disturbances of consciousness and ataxia. The early onset of swallowing and speech disturbances, paralysis of the facial and throat muscles as well as the need for assisted ventilation indicates an unfavorable prognosis. In children and adolescents, TBE is often unspecific with the symptoms of a flu infection and thus more benign than in adults. With age, not only the course is more serious, but also the number of residual deficits increases.

The diagnosis is based on history with stays in a risk area, the neurological symptoms with marked impairment of the general condition, the demonstration of TBE-specific IgM and IgG antibodies in the blood and a pleocytosis in the CSF. No specific treatment for TBE is known so far, but TBE can be successfully prevented by active immunization. Vaccination is recommended for all persons who stay repeatedly in a risk area.

* Den Leitlinientext zusammen mit der Interessenkonflikterklärung finden Sie auch auf www.dgn.org/leitlinien sowie www.awmf.de Frühsommer-Meningoenzephalitis.


 
  • Literatur

  • 1 Schosser R, Reichert A, Mansmann U. et al. Irregular tick-borne encephalitis vaccination schedules: the effect of a single catch-up vaccination with FSME-IMMUN. A prospective non-interventional study. Vaccine 2014; 32: 2375-2381
  • 2 Chiba N, Osada M, Komoro K. et al. Protection against tick-borne encephalitis virus isolated in Japan by active and passive immunization. Vaccine 1999; 17: 1532-1539
  • 3 Heinz FX, Stiasny K. Flaviviruses and their antigenic structure. J Clin Virol 2012; 55: 289-295
  • 4 Kaiser R. The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994-98: a prospective study of 656 patients. Brain 1999; 122 : 2067-2078
  • 5 Suss J. Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine 2003; 21 (Suppl. 01) S19-S35
  • 6 Balogh Z, Egyed L, Ferenczi E. et al. Experimental infection of goats with tick-borne encephalitis virus and the possibilities to prevent virus transmission by raw goat milk. Intervirology 2012; 55: 194-200
  • 7 Klaus C, Beer M, Saier R. et al. Goats and sheep as sentinels for tick-borne encephalitis (TBE) virus – epidemiological studies in areas endemic and non-endemic for TBE virus in Germany. Ticks Tick Borne Dis 2012; 3: 27-37
  • 8 Hudopisk N, Korva M, Janet E. et al. Tick-borne encephalitis associated with consumption of raw goat milk, Slovenia, 2012. Emerg Infect Dis 2013; 19: 806-808
  • 9 Gaumann R, Ruzek D, Muhlemann K. et al. Phylogenetic and virulence analysis of tick-borne encephalitis virus field isolates from Switzerland. J Med Virol 2011; 83: 853-863
  • 10 Poponnikova TV. Specific clinical and epidemiological features of tick-borne encephalitis in Western Siberia. Int J Med Microbiol 2006; 296 (Suppl. 40) 59-62
  • 11 Meyer PM, Zimmermann H, Goetschel P. Tick-borne encephalitis presenting as fever without localising signs – a case series. Eur J Pediatr 2010; 169: 767-769
  • 12 Fauser S, Stich O, Rauer S. Unusual case of tick borne encephalitis with isolated myeloradiculitis. J Neurol Neurosurg Psychiatry 2007; 78: 909-910
  • 13 Zambito Marsala S, Francavilla E, Gioulis M. et al. Isolated polio-like syndrome after tick-borne encephalitis presenting with acute hyperckemia. Neurol Sci 2012; 33: 669-672
  • 14 Zambito Marsala S, Pistacchi M, Gioulis M. et al. Neurological complications of tick borne encephalitis: the experience of 89 patients studied and literature review. Neurol Sci 2014; 35: 15-21
  • 15 Racz A, Schaller G, Lunkenheimer J. et al. Isolated meningomyeloradiculitis following infection with tick borne encephalitis virus. Clin Neurol Neurosurg 2012; 114: 1263-1265
  • 16 Enzinger C, Melisch B, Reischl A. et al. Polyradiculitis as a predominant symptom of tick-borne encephalitis virus infection. Archives of neurology 2009; 66: 904-905
  • 17 Poschl P, Kleiter I, Grubwinkler S. et al. [Severe tick-borne encephalomyelitis with lack of cerebrospinal fluid pleocytosis]. Fortschr Neurol Psychiatr 2009; 77: 591-593
  • 18 Stupica D, Strle F, Avsic-Zupanc T. et al. Tick borne encephalitis without cerebrospinal fluid pleocytosis. BMC Infect Dis 2014; 14: 614
  • 19 Kleiter I, Steinbrecher A, Flugel D. et al. Autonomic involvement in tick-borne encephalitis (TBE): report of five cases. Eur J Med Res 2006; 11: 261-265
  • 20 Hansson ME, Orvell C, Engman ML. et al. Tick-borne encephalitis in childhood: rare or missed?. Pediatr Infect Dis J 2011; 30: 355-357
  • 21 Sundin M, Hansson ME, Engman ML. et al. Pediatric tick-borne infections of the central nervous system in an endemic region of Sweden: a prospective evaluation of clinical manifestations. Eur J Pediatr 2012; 171: 347-352
  • 22 Grubbauer HM, Dornbusch HJ, Spork D. et al. Tick-borne encephalitis in a 3-month-old child. Eur J Pediatr 1992; 151: 743-744
  • 23 Schmolck H, Maritz E, Kletzin I. et al. Neurologic, neuropsychologic, and electroencephalographic findings after European tick-borne encephalitis in children. J Child Neurol 2005; 20: 500-508
  • 24 Iff T, Meier R, Olah E. et al. Tick-borne meningo-encephalitis in a 6-week-old infant. Eur J Pediatr 2005; 164: 787-788
  • 25 Jones N, Sperl W, Koch J. et al. Tick-borne encephalitis in a 17-day-old newborn resulting in severe neurologic impairment. Pediatr Infect Dis J 2007; 26: 185-186
  • 26 Cizman M, Rakar R, Zakotnik B. et al. Severe forms of tick-borne encephalitis in children. Wien Klin Wochenschr 1999; 111: 484-487
  • 27 Arnez M, Luznik-Bufon T, Avsic-Zupanc T. et al. Causes of febrile illnesses after a tick bite in Slovenian children. Pediatr Infect Dis J 2003; 22: 1078-1083
  • 28 Kaiser R. Frühsommermeningoenzephalitis im Kindes- und Jugendalter. Monatsschrift Kinderheilkunde 2006; 154: 1111-1116
  • 29 Kunze U, Asokliene L, Bektimirov T. et al. Tick-borne encephalitis in childhood – consensus 2004. Wien Med Wochenschr 2004; 154: 242-245
  • 30 Logar M, Bogovic P, Cerar D. et al. Tick-borne encephalitis in Slovenia from 2000 to 2004: comparison of the course in adult and elderly patients. Wien Klin Wochenschr 2006; 118: 702-707
  • 31 Arnez M, Avsic-Zupanc T. Tick-borne encephalitis in children: an update on epidemiology and diagnosis. Expert Rev Anti Infect Ther 2009; 7: 1251-1260
  • 32 Engman ML, Lindstrom K, Sallamba M. et al. One-year follow-up of tick-borne central nervous system infections in childhood. Pediatr Infect Dis J 2012; 31: 570-574
  • 33 Fowler A, Forsman L, Eriksson M. et al. Tick-borne encephalitis carries a high risk of incomplete recovery in children. J Pediatr 2013; 163: 555-560
  • 34 Zenz W, Pansi H, Zoehrer B. et al. Tick-borne encephalitis in children in Styria and Slovenia between 1980 and 2003. Pediatr Infect Dis J 2005; 24: 892-896
  • 35 Logina I, Krumina A, Karelis G. et al. Clinical features of double infection with tick-borne encephalitis and Lyme borreliosis transmitted by tick bite. J Neurol Neurosurg Psychiatry 2006; 77: 1350-1353
  • 36 Oksi J, Viljanen MK, Kalimo H. et al. Fatal encephalitis caused by concomitant infection with tick-borne encephalitis virus and Borrelia burgdorferi. Clin Infect Dis 1993; 16: 392-396
  • 37 Holzmann H. Diagnosis of tick-borne encephalitis. Vaccine 2003; 21 (Suppl. 01) S36-40
  • 38 Venturi G, Martelli P, Mazzolini E. et al. Humoral immunity in natural infection by tick-borne encephalitis virus. J Med Virol 2009; 81: 665-671
  • 39 Stiasny K, Aberle JH, Chmelik V. et al. Quantitative determination of IgM antibodies reduces the pitfalls in the serodiagnosis of tick-borne encephalitis. J Clin Virol 2012; 54: 115-120
  • 40 Gassmann C, Bauer G. Avidity determination of IgG directed against tick-borne encephalitis virus improves detection of current infections. J Med Virol 1997; 51: 242-251
  • 41 Kaiser R, Holzmann H. Laboratory findings in tick-borne encephalitis – correlation with clinical outcome. Infection 2000; 28: 78-84
  • 42 Viallon A, Desseigne N, Marjollet O. et al. Meningitis in adult patients with a negative direct cerebrospinal fluid examination: value of cytochemical markers for differential diagnosis. Crit Care 2011; 15: R136
  • 43 Alkadhi H, Kollias SS. MRI in tick-borne encephalitis. Neuroradiology 2000; 42: 753-755
  • 44 Vollmann H, Hagemann G, Mentzel HJ. et al. Isolated reversible splenial lesion in tick-borne encephalitis: a case report and literature review. Clin Neurol Neurosurg 2011; 113: 430-433
  • 45 Pfefferkorn T, Feddersen B, Schulte-Altedorneburg G. et al. Tick-borne encephalitis with polyradiculitis documented by MRI. Neurology 2007; 68: 1232-1233
  • 46 Marjelund S, Jaaskelainen A, Tikkakoski T. et al. Gadolinium enhancement of cauda equina: a new MR imaging finding in the radiculitic form of tick-borne encephalitis. AJNR Am J Neuroradiol 2006; 27: 995-997
  • 47 Marjelund S, Tikkakoski T, Tuisku S. et al. Magnetic resonance imaging findings and outcome in severe tick-borne encephalitis. Report of four cases and review of the literature. Acta Radiol 2004; 45: 88-94
  • 48 Stich O, Reinhard M, Rauer S. MRI scans of cervical cord provide evidence of anterior horn lesion in a patient with tick-borne encephalomyeloradiculitis. Eur J Neurol 2007; 14: e5-6
  • 49 Bender A, Schulte-Altedorneburg G, Walther EU. et al. Severe tick borne encephalitis with simultaneous brain stem, bithalamic, and spinal cord involvement documented by MRI. J Neurol Neurosurg Psychiatry 2005; 76: 135-137
  • 50 Kaiser R. [Neuroborreliosis and diphasic meningoencephalitis – common features and differences]. Fortschr Neurol Psychiatr 2005; 73: 750-759
  • 51 Karelis G, Bormane A, Logina I. et al. Tick-borne encephalitis in Latvia 1973–2009: epidemiology, clinical features and sequelae. Eur J Neurol 2012; 19: 62-68
  • 52 Haglund M, Forsgren M, Lindh G. et al. A 10-year follow-up study of tick-borne encephalitis in the Stockholm area and a review of the literature: need for a vaccination strategy. Scand J Infect Dis 1996; 28: 217-224
  • 53 Günther G, Haglund M, Lindquist L. et al. Tick-borne encephalitis in Sweden in relation to aseptic meningo-encephalitis of other etiology: a prospective study of clinical course and outcome. J Neurol 1997; 244: 230
  • 54 Kaiser R, Vollmer H, Schmidtke K. et al. [Follow-up and prognosis of early summer meningoencephalitis]. Nervenarzt 1997; 68: 324-330
  • 55 Misic Majerus L, Dakovic Rode O, Ruzic Sabljic E. [Post-encephalitic syndrome in patients with tick-borne encephalitis]. Acta Med Croatica 2009; 63: 269-278
  • 56 Bogovic P, Lotric-Furlan S, Strle F. What tick-borne encephalitis may look like: clinical signs and symptoms. Travel medicine and infectious disease 2010; 8: 246-250
  • 57 Schwanda M, Oertli S, Frauchiger B. et al. [Tick-borne meningoencephalitis in Thurgau Canton: a clinical and epidiomological analysis]. Schweiz Med Wochenschr 2000; 130: 1447-1455
  • 58 Mickiene A, Laiskonis A, Gunther G. et al. Tickborne encephalitis in an area of high endemicity in lithuania: disease severity and long-term prognosis. Clin Infect Dis 2002; 35: 650-658
  • 59 Lammli B, Muller A, Ballmer PE. Spätfolgen nach Frühsommer-Meningoenzephalitis. Schweiz Med Wochenschr 2000; 130: 909-915
  • 60 Kaiser R. Langzeitprognose bei primär myelitischer Manifestation der FSME. Eine Verlaufsanalyse über 10 Jahre. Nervenarzt 2011; 82: 1020-1025
  • 61 Demicheli V, Debalini MG, Rivetti A. Vaccines for preventing tick-borne encephalitis. Cochrane Database Syst Rev 2009; DOI: 10.1002/14651858.CD000977. pub2: CD000977
  • 62 Orlinger KK, Hofmeister Y, Fritz R. et al. A tick-borne encephalitis virus vaccine based on the European prototype strain induces broadly reactive cross-neutralizing antibodies in humans. J Infect Dis 2011; 203: 1556-1564
  • 63 Wittermann C, Izu A, Petri E. et al. Five year follow-up after primary vaccination against tick-borne encephalitis in children. Vaccine 2015; 33: 1824-1829
  • 64 Broker M, Schondorf I. Are tick-borne encephalitis vaccines interchangeable?. Expert Rev Vaccines 2006; 5: 461-466
  • 65 Prymula R, Pollabauer EM, Pavlova BG. et al. Antibody persistence after two vaccinations with either FSME-IMMUN(R) Junior or ENCEPUR(R) Children followed by third vaccination with FSME-IMMUN(R) Junior. Human vaccines & immunotherapeutics 2012; 8: 736-742
  • 66 Wittermann C, Petri E, Zent O. Long-term persistence of tick-borne encephalitis antibodies in children 5 years after first booster vaccination with Encepur Children. Vaccine 2009; 27: 1585-1588
  • 67 Andersson CR, Vene S, Insulander M. et al. Vaccine failures after active immunisation against tick-borne encephalitis. Vaccine 2010; 28: 2827-2831
  • 68 Koppi S, Fae P, Hartmann G. et al. [Fatal outcome of tick-borne encephalitis despite complete active vaccination]. Nervenarzt 2011; 82: 506, 508
  • 69 Jilkova E, Vejvalkova P, Stiborova I. et al. Serological response to tick-borne encephalitis (TBE) vaccination in the elderly – results from an observational study. Expert Opin Biol Ther 2009; 9: 797-803
  • 70 Weinberger B, Keller M, Fischer KH. et al. Decreased antibody titers and booster responses in tick-borne encephalitis vaccinees aged 50–90 years. Vaccine 2010; 28: 3511-3515