Int J Sports Med 2017; 38(07): 501-507
DOI: 10.1055/s-0043-104853
Genetics & Molecular Biology
© Georg Thieme Verlag KG Stuttgart · New York

Two Genetic Loci associated with Medial Collateral Ligament Injury

Andrew K. Roos
1   Dev. Bio., Stanford University, Stanford, United States
,
Andy L. Avins
2   Division of Research, Kaiser Permanente Northern California, Oakland, United States
,
Marwa A. Ahmed
3   Orthopedic Surgery, Stanford University, Stanford, United States
,
John P. Kleimeyer
4   Department Orthopaedic Surgery, Stanford University, Stanford, United States
,
Thomas R. Roos
1   Dev. Bio., Stanford University, Stanford, United States
,
Michael Fredericson
4   Department Orthopaedic Surgery, Stanford University, Stanford, United States
,
John P.A. Ioannidis
5   Department of Medicine, Stanford University, Stanford, United States
,
Jason L. Dragoo
4   Department Orthopaedic Surgery, Stanford University, Stanford, United States
,
Stuart Kim
1   Dev. Bio., Stanford University, Stanford, United States
› Author Affiliations
Further Information

Publication History



accepted after revision 13 February 2017

Publication Date:
08 May 2017 (online)

Abstract

Medial collateral ligament (MCL) injuries are a common knee injury, especially in competitive athletes. Identifying genetic loci associated with MCL injury could shed light on its etiology. A genome-wide association screen was performed using data from the Research Program in Genes, Environment and Health (RPGEH) including 1 572 cases of MCL injury and 100 931 controls. 2 SNPs (rs80351309 and rs6083471) showed an association with MCL injury at genome-wide significance (p<5×10−8) with moderate effects (odds ratios=2.12 and 1.57, respectively). For rs80351309, the genotypes were imputed with only moderate accuracy, so this SNP should be viewed with caution until its association with MCL injury can be validated. The SNPs rs80351309 and rs6083471 show a statistically significant association with MCL injury. It will be important to replicate this finding in future studies.

Supporting Information

 
  • References

  • 1 Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 2012; 22: 1790-1797
  • 2 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015; 4: 7
  • 3 Cochran WG. The combination of estimates from different experiments. Biometrics 1954; 10: 101-129
  • 4 Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57-74
  • 5 Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 2015; 348: 648-660
  • 6 Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55: 997-1004
  • 7 Harriss DJ, Atkinson G. Ethical Standards in Sport and Exercise Science Research: 2016 Update. Int J Sports Med 2015; 36: 1121-1124
  • 8 Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Br Med J (Clin Res Ed) 2003; 327: 557-560
  • 9 Hoffmann TJ, Kvale MN, Hesselson SE, Zhan Y, Aquino C, Cao Y, Cawley S, Chung E, Connell S, Eshragh J, Ewing M, Gollub J, Henderson M, Hubbell E, Iribarren C, Kaufman J, Lao RZ, Lu Y, Ludwig D, Mathauda GK, McGuire W, Mei G, Miles S, Purdy MM, Quesenberry C, Ranatunga D, Rowell S, Sadler M, Shapero MH, Shen L, Shenoy TR, Smethurst D, Van den Eeden SK, Walter L, Wan E, Wearley R, Webster T, Wen CC, Weng L, Whitmer RA, Williams A, Wong SC, Zau C, Finn A, Schaefer C, Kwok PY, Risch N. Next generation genome-wide association tool: Design and coverage of a high-throughput European-optimized SNP array. Genomics 2011; 98: 79-89
  • 10 Hoffmann TJ, Zhan Y, Kvale MN, Hesselson SE, Gollub J, Iribarren C, Lu Y, Mei G, Purdy MM, Quesenberry C, Rowell S, Shapero MH, Smethurst D, Somkin CP, Van den Eeden SK, Walter L, Webster T, Whitmer RA, Finn A, Schaefer C, Kwok P-Y, Risch N. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. Genomics 2011; 98: 422-430
  • 11 Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 2012; 44: 955-959
  • 12 Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 2011; 1: 457-470
  • 13 Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 2009; 5: e1000529
  • 14 Ioannidis JPA, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. PloS One 2007; 2: e841
  • 15 Jorgenson E, Makki N, Shen L, Chen DC, Tian C, Eckalbar WL, Hinds D, Ahituv N, Avins A. A genome-wide association study identifies four novel susceptibility loci underlying inguinal hernia. Nat Commun 2015; 6: 10130
  • 16 Koehle MS, Lloyd-Smith R, Taunton JE. Alpine ski injuries and their prevention. Sports Med 2002; 32: 785-793
  • 17 Lorentzon R, Wedren H, Pietila T. Incidence, nature, and causes of ice hockey injuries. A three-year prospective study of a Swedish elite ice hockey team. Am J Sports Med 1988; 16: 392-396
  • 18 Najibi S, Albright JP. The use of knee braces, part 1: Prophylactic knee braces in contact sports. Am J Sports Med 2005; 33: 602-611
  • 19 Paulos LE, France EP, Rosenberg TD, Jayaraman G, Abbott PJ, Jaen J. The biomechanics of lateral knee bracing. Part I: Response of the valgus restraints to loading. Am J Sports Med 1987; 15: 419-429
  • 20 Peterson L, Junge A, Chomiak J, Graf-Baumann T, Dvorak J. Incidence of football injuries and complaints in different age groups and skill-level groups. Am J Sports Med 2000; 28: S51-S57
  • 21 Phisitkul P, James SL, Wolf BR, Amendola A, Schein A, Matcuk G, Patel D, Gottsegen CJ, Hartshorn T, Forrester D, White E. MCL injuries of the knee: current concepts review. Iowa Orthop J 2006; 26: 77-90
  • 22 Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010; 26: 2336-2337
  • 23 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559-575
  • 24 Reider B. Medial collateral ligament injuries in athletes. Sports Med 1996; 21: 147-156
  • 25 Roach CJ, Haley CA, Cameron KL, Pallis M, Svoboda SJ, Owens BD. The epidemiology of medial collateral ligament sprains in young athletes. Am J Sports Med 2014; 42: 1103-1109
  • 26 Roos TR, Roos AK, Avins AL, Ahmed MA, Kleimeyer JP, Frederidson M, Ioannidis JP, Dragoo JL, Kim SK. Genome-Wide Association Study Identifies a Locus Near Cadherin8 Associated With Rotator Cuff Injury. Am J Sports Med submitted.
  • 27 Schein A, Matcuk G, Fau-Patel D, Patel D, Fau-Gottsegen CJ, Gottsegen Cj Fau-Hartshorn T, Hartshorn T, Fau-Forrester D, Forrester D, Fau - White E, White E. Structure and function, injury, pathology, and treatment of the medial collateral ligament of the knee. Emerg Radiol 2012; 19: 489-498
  • 28 Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is more efficient than replication-based analysis for 2-stage genome-wide association studies. Nat Genet 2006; 38: 209-213