Geburtshilfe Frauenheilkd 2017; 77(07): 733-739
DOI: 10.1055/s-0043-108531
GebFra Magazin
Aktuell diskutiert
Georg Thieme Verlag KG Stuttgart · New York

Konsensusempfehlung des Deutschen Konsortiums Familiärer Brust- und Eierstockkrebs zum Umgang mit Ergebnissen der Multigenanalyse

Rita K. Schmutzler
Further Information

Publication History

Publication Date:
17 July 2017 (online)

Das Deutsche Konsortium Familiärer Brust- und Eierstockkrebs (GC-HBOC) hat für die Analyse von Risikogenen für das familiäre Mamma- und Ovarialkarzinom ein Multigen-Panel (TruRisk®) etabliert, das derzeit die Kerngene („core genes“) ATM, BRCA1, BRCA2, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD51D und TP53 enthält, sowie weitere Gene, die aus aktuellen Forschungsarbeiten hervorgegangen sind und noch validiert werden müssen. Das syndromassoziierte Gen PTEN befindet sich hinsichtlich seiner Bedeutung in Familien mit prädominantem Brust- und Eierstockkrebs-Phänotyp derzeit ebenfalls in der Evaluation. Ein interdisziplinäres Expertenteam des GC-HBOC hat die verfügbaren Daten zur Risikomodifikation bei Vorliegen einer pathogenen (krankheitsverursachenden) Mutation in diesen Genen basierend auf einer strukturierten Literaturrecherche (Abb. 1S) und im Rahmen eines formalen Konsensusprozesses bewertet. Ziel dieser Arbeit ist es, das individuelle Erkrankungsrisiko besser einschätzen und auf dieser Basis klinische Empfehlungen ableiten zu können. Auf der Grundlage dieser evidenzbasierten Bewertung werden die Ratsuchenden in den Zentren des Deutschen Konsortiums vom Erstgespräch vor Gentest bis zur Inanspruchnahme individueller risikoadaptierter präventiver/therapeutischer Maßnahmen beraten und betreut. Dieser Artikel fasst die konsentierten Inhalte zusammen.

Supporting Information

 
  • Literatur

  • 1 Kast K, Rhiem K, Wappenschmidt B. et al. Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet 2016; 53: 465-471
  • 2 Easton DF, Pharoah PD, Antoniou AC. et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med 2015; 372: 2243-2257
  • 3 Antoniou AC, Cunningham AP, Peto J. et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 2008; 98: 1457-1466
  • 4 Mavaddat N, Peock S, Frost D. et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 2013; 105: 812-822
  • 5 Leitlinienprogramm Onkologie der AWMF. Deutschen Krebsgesellschaft e. V. und Deutschen Krebshilfe e. V.. Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms. 2012. Online: http://www.awmf.org/leitlinien/detail/II/032-045OL.html Stand: 07.04.2017 und https://www.ago-online.de/fileadmin/downloads/leitlinien/mamma/2017-03/AGO_deutsch/PDF_Einzeldateien_deutsch/2017D%2002_Brustkrebsrisiko%20und%20Praevention.pdf
  • 6 Hauke J, Heimbach A, Richters LK. et al. Next-generation sequencing in BRCA1/2-negative breast and ovarian cancer families. J Clin Oncol 2016; 34 (Suppl.) Abstr.. 1533
  • 7 Ressing M, Blettner M, Klug S. Auswertung epidemiologischer Studien. Dtsch Ärztebl 2010; 107: 187-192
  • 8 Plon SE, Eccles DM, Easton D. et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat 2008; 29: 1282-1291
  • 9 Antoniou AC, Casadei S, Heikkinen T. et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med 2014; 371: 497-506
  • 10 Thompson ER, Gorringe KL, Rowley SM. et al. Prevalence of PALB2 mutations in Australian familial breast cancer cases and controls. Breast Cancer Res 2015; 17: 111
  • 11 Cybulski C, Kluzniak W, Huzarski T. et al. Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncol 2015; 16: 638-644
  • 12 Tischkowitz M, Capanu M, Sabbaghian N. et al. Rare germline mutations in PALB2 and breast cancer risk: a population-based study. Hum Mutat 2012; 33: 674-680
  • 13 Ramus SJ, Song H, Dicks E. et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst 2015; DOI: 10.1093/jnci/djv214.
  • 14 Pritzlaff M, Summerour P, McFarland R. et al. Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results. Breast Cancer Res Treat 2017; 161: 575-586
  • 15 Tischkowitz M, Xia B. PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res 2010; 70: 7353-7359
  • 16 Jones S, Hruban RH, Kamiyama M. et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science 2009; 324: 217
  • 17 Reid S, Schindler D, Hanenberg H. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 2007; 39: 162-164
  • 18 Goldgar DE, Healey S, Dowty JG. et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 2011; 13: R73
  • 19 Tavtigian SV, Oefner PJ, Babikyan D. et al. Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 2009; 85: 427-446
  • 20 Renwick A, Thompson D, Seal S. et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 2006; 38: 873-875
  • 21 Aloraifi F, McCartan D, McDevitt T. et al. Protein-truncating variants in moderate-risk breast cancer susceptibility genes: a meta-analysis of high-risk case-control screening studies. Cancer Genet 2015; 208: 455-463
  • 22 Cybulski C, Wokolorczyk D, Jakubowska A. et al. Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 2011; 29: 3747-3752
  • 23 Schmidt MK, Hogervorst F, van Hien R. et al. Age- and tumor subtype-specific breast cancer risk estimates for CHEK2*1100delC carriers. J Clin Oncol 2016; 34: 2750-2760
  • 24 Fletcher O, Johnson N, Dos Santos Silva I. et al. Family history, genetic testing, and clinical risk prediction: pooled analysis of CHEK2 1100delC in 1,828 bilateral breast cancers and 7,030 controls. Cancer Epidemiol Biomarkers Prev 2009; 18: 230-234
  • 25 Weischer M, Nordestgaard BG, Pharoah P. et al. CHEK2*1100delC heterozygosity in women with breast cancer associated with early death, breast cancer-specific death, and increased risk of a second breast cancer. J Clin Oncol 2012; 30: 4308-4316
  • 26 Roberts NJ, Jiao Y, Yu J. et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov 2012; 2: 41-46
  • 27 Stankovic T, Kidd AM, Sutcliffe A. et al. ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am J Hum Genet 1998; 62: 334-345
  • 28 Cybulski C, Huzarski T, Gorski B. et al. A novel founder CHEK2 mutation is associated with increased prostate cancer risk. Cancer Res 2004; 64: 2677-2679
  • 29 Southey MC, Goldgar DE, Winqvist R. et al. PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet 2016; 53: 800-811
  • 30 Cybulski C, Wokolorczyk D, Kladny J. et al. Germline CHEK2 mutations and colorectal cancer risk: different effects of a missense and truncating mutations?. Eur J Hum Genet 2007; 15: 237-241
  • 31 Gao P, Ma N, Li M. et al. Functional variants in NBS1 and cancer risk: evidence from a meta-analysis of 60 publications with 111 individual studies. Mutagenesis 2013; 28: 683-697
  • 32 di Masi A, Antoccia A. NBS1 heterozygosity and cancer risk. Curr Genomics 2008; 9: 275-281
  • 33 Zhang B, Beeghly-Fadiel A, Long J. et al. Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol 2011; 12: 477-488
  • 34 Zhang ZH, Yang LS, Huang F. et al. Current evidence on the relationship between two polymorphisms in the NBS1 gene and breast cancer risk: a meta-analysis. Asian Pac J Cancer Prev 2012; 13: 5375-5379
  • 35 Zhang G, Zeng Y, Liu Z. et al. Significant association between Nijmegen breakage syndrome 1 657del5 polymorphism and breast cancer risk. Tumour Biol 2013; 34: 2753-2757
  • 36 Cybulski C, Wokolorczyk D, Kluzniak W. et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer 2013; 108: 461-468
  • 37 Varon R, Demuth I, Chrzanowska KH. Nijmegen Breakage Syndrome. In: Pagon RA, Adam MP, Ardinger HH. et al. eds. GeneReviews(R). Seattle WA: University of Washington, Seattle; 1993. – 2017
  • 38 Thompson ER, Rowley SM, Li N. et al. Panel testing for familial breast cancer: calibrating the tension between research and clinical care. J Clin Oncol 2016; 34: 1455-1459
  • 39 Meindl A, Hellebrand H, Wiek C. et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 2010; 42: 410-414
  • 40 Song H, Dicks E, Ramus SJ. et al. Contribution of germline mutations in the RAD51B, RAD51C, and RAD51D genes to ovarian cancer in the population. J Clin Oncol 2015; 33: 2901-2907
  • 41 Loveday C, Turnbull C, Ramsay E. et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet 2011; 43: 879-882
  • 42 Pelttari LM, Heikkinen T, Thompson D. et al. RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet 2011; 20: 3278-3288
  • 43 Vaz F, Hanenberg H, Schuster B. et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 2010; 42: 406-409
  • 44 Malkin D, Li FP, Strong LC. et al. Germ line p 53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233-1238
  • 45 Gonzalez KD, Noltner KA, Buzin CH. et al. Beyond Li Fraumeni Syndrome: clinical characteristics of families with p 53 germline mutations. J Clin Oncol 2009; 27: 1250-1256
  • 46 Chompret A, Brugieres L, Ronsin M. et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer 2000; 82: 1932-1937
  • 47 Hwang SJ, Lozano G, Amos CI. et al. Germline p 53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet 2003; 72: 975-983
  • 48 Ruijs MW, Verhoef S, Rookus MA. et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet 2010; 47: 421-428
  • 49 McCuaig JM, Armel SR, Novokmet A. et al. Routine TP53 testing for breast cancer under age 30: ready for prime time?. Fam Cancer 2012; 11: 607-613
  • 50 Lalloo F, Varley J, Moran A. et al. BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur J Cancer 2006; 42: 1143-1150
  • 51 Bougeard G, Renaux-Petel M, Flaman JM. et al. Revisiting Li-Fraumeni Syndrome from TP53 mutation carriers. J Clin Oncol 2015; 33: 2345-2352
  • 52 Gonzalez KD, Buzin CH, Noltner KA. et al. High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet 2009; 46: 689-693
  • 53 Nelen MR, Kremer H, Konings IB. et al. Novel PTEN mutations in patients with Cowden disease: absence of clear genotype-phenotype correlations. Eur J Hum Genet 1999; 7: 267-273
  • 54 Tan MH, Mester JL, Ngeow J. et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 2012; 18: 400-407
  • 55 Bubien V, Bonnet F, Brouste V. et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet 2013; 50: 255-263
  • 56 Nieuwenhuis MH, Kets CM, Murphy-Ryan M. et al. Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome. Fam Cancer 2014; 13: 57-63
  • 57 Hansford S, Kaurah P, Li-Chang H. et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol 2015; 1: 23-32
  • 58 Jonsson BA, Adami HO, Hagglund M. et al. -160C/A polymorphism in the E-cadherin gene promoter and risk of hereditary, familial and sporadic prostate cancer. Int J Cancer 2004; 109: 348-352
  • 59 Lindstrom S, Wiklund F, Jonsson BA. et al. Comprehensive genetic evaluation of common E-cadherin sequence variants and prostate cancer risk: strong confirmation of functional promoter SNP. Hum Genet 2005; 118: 339-347
  • 60 Hisada M, Garber JE, Fung CY. et al. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst 1998; 90: 606-611
  • 61 Heymann S, Delaloge S, Rahal A. et al. Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat Oncol 2010; 5: 104
  • 62 Li J, Meeks H, Feng BJ. et al. Targeted massively parallel sequencing of a panel of putative breast cancer susceptibility genes in a large cohort of multiple-case breast and ovarian cancer families. J Med Genet 2016; 53: 34-42