Neurology International Open 2017; 01(03): E127-E135
DOI: 10.1055/s-0043-109031
Review
© Georg Thieme Verlag KG Stuttgart · New York

Calcium Homeostasis in Multiple Sclerosis

Petra Hundehege
1   Institute of Translational Neurology, Department of Neurology, University Clinic Münster
,
Lisa Epping
1   Institute of Translational Neurology, Department of Neurology, University Clinic Münster
,
S. G. Meuth
1   Institute of Translational Neurology, Department of Neurology, University Clinic Münster
› Author Affiliations
Further Information

Publication History

Publication Date:
20 July 2017 (online)

Abstract

Calcium is the signal molecule crucial for almost all cellular processes. Disturbances in calcium homeostasis are responsible for a variety of pathological conditions. This review article summarizes recent findings on the influence of calcium in multiple sclerosis.

 
  • References

  • 1 Frohman EM, Racke MK, Raine CS. Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 2006; 354: 942-955
  • 2 Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 2015; 14: 183-193
  • 3 Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 2015; 14: 406-419
  • 4 Mallucci G, Peruzzotti-Jametti L, Bernstock JD. et al. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 2015; 127-128: 1-22
  • 5 Bittner S, Ruck T, Schuhmann M. et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 2013; 19: 1161-1165
  • 6 Breuer J, Schwab N, Schneider-Hohendorf T. et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann Neurol 2014; 75: 739-758
  • 7 Clapham DE. Calcium signaling. Cell 2007; 131: 1047-1058
  • 8 Wu ZZ, Li DP, Chen SR. et al. Aminopyridines potentiate synaptic and neuromuscular transmission by targeting the voltage-activated calcium channel beta subunit. J Biol Chem 2009; 284: 36453-36461
  • 9 Sebzda E, Mariathasan S, Ohteki T. et al. Selection of the T cell repertoire. Annu Rev Immunol 1999; 17: 829-874
  • 10 Schwarz A, Schumacher M, Pfaff D. et al. Fine-tuning of regulatory T cell function: the role of calcium signals and naive regulatory T cells for regulatory T cell deficiency in multiple sclerosis. J Immunol 2013; 190: 4965-4970
  • 11 Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol 2015; 33: 291-353
  • 12 Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 2010; 28: 491-533
  • 13 Feske S. Immunodeficiency due to defects in store-operated calcium entry. Ann NY Acad Sci 2011; 1238: 74-90
  • 14 Schuhmann M, Stegner D, Berna-Erro A. et al. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation. J Immunology 2010; 184: 1536-1542
  • 15 Ma J, McCarl C-A, Khalil S. et al. T-cell-specific deletion of STIM1 and STIM2 protects mice from EAE by impairing the effector functions of Th1 and Th17 cells. Eur J Immunology 2010; 40: 3028-3042
  • 16 Kim KD, Srikanth S, Tan YV. et al. Calcium signaling via Orai1 is essential for induction of the nuclear orphan receptor pathway to drive Th17 differentiation. J Immunol 2014; 192: 110-122
  • 17 Tian C, Du L, Zhou Y. et al. Store-operated CRAC channel inhibitors: opportunities and challenges. Future Med Chem 2016; 8: 817-832
  • 18 Chen G, Panicker S, Lau KY. et al. Characterization of a novel CRAC inhibitor that potently blocks human T cell activation and effector functions. Mol Immunol 2013; 54: 355-367
  • 19 Cox JH, Hussell S, Sondergaard H. et al. Antibody-mediated targeting of the Orai1 calcium channel inhibits T cell function. PLoS One 2013; 8: e82944
  • 20 Fuchs S, Rensing-Ehl A, Speckmann C. et al. Antiviral and regulatory T cell immunity in a patient with stromal interaction molecule 1 deficiency. J Immunol 2012; 188: 1523-1533
  • 21 Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1. Ann N Y Acad Sci 2015; 1356: 45-79
  • 22 Wang H, Zhang X, Xue L. et al. Low-voltage-activated CaV3.1 calcium channels shape t helper cell cytokine profiles. Immunity 2016; 44: 782-794
  • 23 Ehling P, Meuth P, Eichinger P. et al. Human T cells in silico: Modelling their electrophysiological behaviour in health and disease. J Theor Biol 2016; 404: 236-250
  • 24 Wolf IM, Diercks BP, Gattkowski E. et al. Frontrunners of T cell activation: Initial, localized Ca2+ signals mediated by NAADP and the type 1 ryanodine receptor. Sci Signal 2015; 8: ra102
  • 25 Chokshi R, Matsushita M, Kozak JA. Sensitivity of TRPM7 channels to Mg2+ characterized in cell-free patches of Jurkat T lymphocytes. Am J Physiol Cell Physiol 2012; 302: C1642-1651
  • 26 Chokshi R, Matsushita M, Kozak J. Detailed examination of Mg2+ and pH sensitivity of human TRPM7 channels. Am J Physiol Cell Physiol 2012; 302: 11
  • 27 Carmans S, Hendriks JJ, Slaets H. et al. Systemic treatment with the inhibitory neurotransmitter gamma-aminobutyric acid aggravates experimental autoimmune encephalomyelitis by affecting proinflammatory immune responses. J Neuroimmunol 2013; 255: 45-53
  • 28 Prud’homme GJ, Glinka Y, Wang Q. Immunological GABAergic interactions and therapeutic applications in autoimmune diseases. Autoimmun Rev 2015; 14: 1048-1056
  • 29 Alam S, Laughton DL, Walding A. et al. Human peripheral blood mononuclear cells express GABAA receptor subunits. Mol Immunol 2006; 43: 1432-1442
  • 30 Abbott NJ, Patabendige AA, Dolman DE. et al. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37: 13-25
  • 31 Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57: 173-185
  • 32 Hartsock A, Nelson WJ. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008; 1778: 660-669
  • 33 Coisne C, Engelhardt B. Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal 2011; 15: 1285-1303
  • 34 Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler 2003; 9: 540-549
  • 35 De Bock M, Wang N, Decrock E. et al. Endothelial calcium dynamics, connexin channels and blood-brain barrier function. Prog Neurobiol 2013; 108: 1-20
  • 36 Ramirez SH, Hasko J, Skuba A. et al. Activation of cannabinoid receptor 2 attenuates leukocyte-endothelial cell interactions and blood-brain barrier dysfunction under inflammatory conditions. J Neurosci 2012; 32: 4004-4016
  • 37 Rochfort KD, Cummins PM. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 2015; 43: 702-706
  • 38 Lanz TV, Becker S, Osswald M. et al. Protein kinase Cbeta as a therapeutic target stabilizing blood-brain barrier disruption in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2013; 110: 14735-14740
  • 39 Prager B, Spampinato SF, Ransohoff RM. Sphingosine 1-phosphate signaling at the blood-brain barrier. Trends Mol Med 2015; 21: 354-363
  • 40 Chen JT, Chen TG, Chang YC. et al. Roles of NMDARs in maintenance of the mouse cerebrovascular endothelial cell-constructed tight junction barrier. Toxicol 2016; 339: 40-50
  • 41 Neuhaus W, Freidl M, Szkokan P. et al. Effects of NMDA receptor modulators on a blood-brain barrier in vitro model. Brain Res 2011; 1394: 49-61
  • 42 Reijerkerk A, Kooij G, van der Pol SM. et al. The NR1 subunit of NMDA receptor regulates monocyte transmigration through the brain endothelial cell barrier. J Neurochem 2010; 113: 447-453
  • 43 Wang XS, Fang HL, Chen Y. et al. Idazoxan reduces blood-brain barrier damage during experimental autoimmune encephalomyelitis in mouse. Eur J Pharmacol 2014; 736: 70-76
  • 44 Macrez R, Ortega MC, Bardou I. et al. Neuroendothelial NMDA receptors as therapeutic targets in experimental autoimmune encephalomyelitis. Brain 2016; 139: 2406-2419
  • 45 Balbuena P, Li W, Rzigalinski BA. et al. Malathion/oxon and lead acetate increase gene expression and protein levels of transient receptor potential canonical channel subunits TRPC1 and TRPC4 in rat endothelial cells of the blood-brain barrier. Int J Toxicol 2012; 31: 238-249
  • 46 Hicks K, O’Neil RG, Dubinsky WS. et al. TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. Am J Physiol Cell Physiol 2010; 298: C1583-1593
  • 47 Etienne-Manneville S, Manneville JB, Adamson P. et al. ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 2000; 165: 3375-3383
  • 48 Weber EW, Han F, Tauseef M. et al. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response. J Exp Med 2015; 212: 1883-1899
  • 49 Kostic M, Zivkovic N, Stojanovic I. Multiple sclerosis and glutamate excitotoxicity. Rev Nneurosci 2013; 24: 71-88
  • 50 Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 2011; 93: 1-12
  • 51 Stavrovskaya IG, Kristal BS. The powerhouse takes control of the cell: Is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death?. Free Radic Biol Med 2005; 38: 687-697
  • 52 Siffrin V, Birkenstock J, Luchtman DW. et al. FRET based ratiometric Ca(2+) imaging to investigate immune-mediated neuronal and axonal damage processes in experimental autoimmune encephalomyelitis. J Neurosci Methods 2015; 249: 8-15
  • 53 Angelova PR, Abramov AY. Alpha-synuclein and beta-amyloid - different targets, same players: calcium, free radicals and mitochondria in the mechanism of neurodegeneration. Biochem Biophys Res Commun 2016; 483: 1110-1115
  • 54 Radbruch H, Bremer D, Guenther R. et al. Ongoing oxidative stress causes subclinical neuronal dysfunction in the recovery phase of EAE. Front Immunol 2016; 7: 92
  • 55 Callea L, Arese M, Orlandini A. et al. Platelet activating factor is elevated in cerebral spinal fluid and plasma of patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 1999; 94: 212-221
  • 56 Göbel K, Pankratz S, Asaridou CM. et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun 2016; 7: 11626
  • 57 Göbel K, Kraft P, Pankratz S. et al. Prothrombin and factor X are elevated in multiple sclerosis patients. Ann Neurol 2016; 80: 946-951
  • 58 Pankratz S, Bittner S, Kehrel BE. et al. The inflammatory role of platelets: translational insights from experimental studies of autoimmune disorders. Int J Mol Sci 2016; DOI: doi: 10.3390/ijms17101723.
  • 59 Bellizzi MJ, Geathers JS, Allan KC. et al. Platelet-activating factor receptors mediate excitatory postsynaptic hippocampal injury in experimental autoimmune encephalomyelitis. J Neurosci 2016; 36: 1336-1346
  • 60 Luchtman D, Gollan R, Ellwardt E. et al. In vivo and in vitro effects of multiple sclerosis immunomodulatory therapeutics on glutamatergic excitotoxicity. J Neurochem 2016; 136: 971-980
  • 61 Gadjanski I, Boretius S, Williams SK. et al. Role of n-type voltage-dependent calcium channels in autoimmune optic neuritis. Ann Neurol 2009; 66: 81-93
  • 62 Hoffmann DB, Williams SK, Bojcevski J. et al. Calcium influx and calpain activation mediate preclinical retinal neurodegeneration in autoimmune optic neuritis. J Neuropathol Exp Neurol 2013; 72: 745-757
  • 63 Sühs KW, Fairless R, Williams SK. et al. N-methyl-D-aspartate receptor blockade is neuroprotective in experimental autoimmune optic neuritis. J Neuropathol Exp Neurol 2014; 73: 507-518