CC BY-NC-ND 4.0 · Geburtshilfe Frauenheilkd 2017; 77(07): 756-764
DOI: 10.1055/s-0043-111899
GebFra Science
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Insufficient Angiogenesis: Cause of Abnormally Thin Endometrium in Subfertile Patients?

Insuffiziente Angiogenese: Ursache eines abnorm dünnen Endometriums bei subfertilen Patientinnen?
Joachim Alfer
1   Institute of Pathology, Kaufbeuren-Ravensburg, Ravensburg, Germany
,
Lars Happel
2   Institute of Reproductive Medicine, IVF-Saar, Saarbrücken, Germany
,
Ralf Dittrich
3   Department of Obstetrics and Gynecology, Erlangen University Hospital Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
,
Matthias W. Beckmann
3   Department of Obstetrics and Gynecology, Erlangen University Hospital Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
,
Arndt Hartmann
4   Department of Pathology, Erlangen University Hospital Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
,
Andreas Gaumann
1   Institute of Pathology, Kaufbeuren-Ravensburg, Ravensburg, Germany
,
Volker U. Buck
5   Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
,
Irmgard Classen-Linke
5   Institute of Molecular and Cellular Anatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
› Author Affiliations
Further Information

Publication History

received 13 April 2017
revised 21 May 2017

accepted 22 May 2017

Publication Date:
17 July 2017 (online)

Abstract

Introduction This study investigated subfertile patients with abnormally thin endometrium after infertility treatment. As they had adequate serum concentrations of hormones, an endometrial factor for subfertility was suspected.

Methods To elucidate the cause of subfertility, endometrial biopsies were taken in each patient in the late proliferative and mid-secretory phases of one menstrual cycle. Endometrial biopsies from women with normal menstrual cycles and confirmed fertility who were undergoing hysterectomy for benign uterine disease were used as positive controls. The tissue samples were investigated for steroid hormone receptor expression and for the proliferation marker Ki-67. Immunohistochemistry was performed with antibodies against the marker molecules for endometrial receptivity – β3 integrin, VEGF, LIF, and CD56 (large granular lymphocytes, LGLs).

Results The steroid hormone receptors for estrogen (E2) and progesterone (P) were expressed normally (at the first biopsy) and were down-regulated (at the second biopsy) within the cycle. Strikingly, all of the marker molecules investigated showed negative or weak and inadequate expression in the mid-secretory phase. Numbers of LGLs remained as low as in the proliferative phase. In contrast, fertile patients were found to express these marker molecules distinctly in the mid-secretory phase.

Conclusions It may be hypothesized that a severe deficiency of these angiogenesis-related marker molecules leads to defective development of the endometrium, which remains thin. Deficient angiogenetic development may thus provide an explanation for the endometrial factor that causes infertility. Further investigations will need to focus on identifying the regulating factors that act between steroid receptor activation and the expression of these marker molecules.

Zusammenfassung

Einleitung Diese Studie untersuchte subfertile Patientinnen mit einem abnorm dünnen Endometrium nach einer Infertilitätsbehandlung. Da ausreichende Hormonkonzentrationen im Blut dieser Frauen gemessen wurden, lag die Vermutung nahe, dass ein endometrialer Faktor für die verminderte Fertilität eine Rolle spielen könnte.

Methoden Um möglichen Ursachen für die verminderte Fertilität auf den Grund zu gehen, wurden bei jeder Patientin Biopsien des Endometriums in der späten Proliferationsphase sowie in der mittleren Sekretionsphase eines Menstruationszyklus durchgeführt. Endometriale Biopsien von fertilen Frauen mit regulärem Menstruationszyklus, die sich einer Hysterektomie wegen gutartiger Gebärmutterveränderungen unterziehen mussten, dienten als Positivkontrollen. Die Gewebeproben wurden auf die Expression von Steroidhormonrezeptoren sowie mit dem Proliferationsmarker Ki-67untersucht. Mithilfe von Antikörpern gegen Markermoleküle der endometrialen Rezeptivität: β3-Integrin, VEGF, LIF und CD56 (große granuläre Lymphozyten, LGLs), wurden immunhistochemische Untersuchungen durchgeführt.

Ergebnisse Die Steroidhormonrezeptoren für Östrogen (E2) und Progesteron (P) waren bei der ersten in einem Zyklus durchgeführten Biopsie normal exprimiert und in der zweiten Biopsie im selben Zyklus herunterreguliert. Auffallend war, dass die Expression aller untersuchten Marker in der mittleren Sekretionsphase negativ oder schwach bzw. ungenügend war. Die Anzahl der LGLs blieb so niedrig wie in der Proliferationsphase. Dagegen wurden diese Markermoleküle bei fertilen Patientinnen in der mittleren Sekretionsphase deutlich exprimiert.

Schlussfolgerungen Es wurde die Hypothese aufgestellt, dass die starke Defizienz dieser Markermoleküle, die in Beziehung zur Angiogenese stehen, zu einer ungenügenden Ausbildung des Endometriums führt, das dann dünn bleibt. Eine unzureichende angiogenetische Entwicklung mag daher der Grund für eine endometriale Insuffizienz sein, die zur Infertilität führt. Weitergehende Studien sind nötig, um die Faktoren zu identifizieren, die zwischen der Steroidrezeptor-Aktivierung und der Expression dieser Markermoleküle regulierend wirken.

 
  • References

  • 1 Lessey BA, Damjanovich L, Coutifaris C. et al. Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. J Clin Invest 1992; 90: 188-195
  • 2 Classen-Linke I, Alfer J, Hey S. et al. Marker molecules of human endometrial differentiation can be hormonally regulated under in-vitro conditions as in-vivo. Hum Reprod Update 1998; 4: 539-549
  • 3 Alfer J, Müller-Schöttle F, Classen-Linke I. et al. The endometrium as a novel target for leptin: differences in fertility and subfertility. Mol Hum Reprod 2000; 6: 595-601
  • 4 Kitawaki J, Koshiba H, Ishihara H. et al. Expression of leptin receptor in human endometrium and fluctuation during the menstrual cycle. J Clin Endocrinol Metab 2000; 85: 1946-1950
  • 5 Kojima K, Kanzaki H, Iwai M. et al. Expression of leukemia inhibitory factor in human endometrium and placenta. Biol Reprod 1994; 50: 882-887
  • 6 Shifren JL, Tseng JF, Zaloudek CJ. et al. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab 1996; 81: 3112-3118
  • 7 Gargett CE, Lederman FL, Lau TM. et al. Lack of correlation between vascular endothelial growth factor production and endothelial cell proliferation in the human endometrium. Hum Reprod 1999; 14: 2080-2088
  • 8 Classen-Linke I, Alfer J, Krusche CA. et al. Progestins, progesterone receptor modulators, and progesterone antagonists change VEGF release of endometrial cells in culture. Steroids 2000; 65: 763-771
  • 9 Stewart CL, Kaspar P, Brunet LJ. et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992; 359: 76-79
  • 10 Chehab FF, Lim ME, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 1996; 12: 318-320
  • 11 Illera MJ, Cullinan E, Gui Y. et al. Blockade of the alpha(v)beta(3) integrin adversely affects implantation in the mouse. Biol Reprod 2000; 62: 1285-1290
  • 12 Peyghambari F, Fayazi M, Amanpour S. et al. Assessment of α4, αv, β1 and β3 integrins expression throughout the implantation window phase in endometrium of a mouse model of polycystic ovarian syndromes. Iran J Reprod Med 2014; 12: 687-694
  • 13 Rosario GX, Hondo E, Jeong JW. et al. The LIF-mediated molecular signature regulating murine embryo implantation. Biol Reprod 2014; 91: 66
  • 14 Akira S, Yoshida K, Tanaka T. et al. Targeted disruption of the IL-6 related genes: gp130 and NF-IL-6. Immunol Rev 1995; 148: 221-253
  • 15 Miller PB, Parnell BA, Bushnell G. et al. Endometrial receptivity defects during IVF cycles with and without letrozole. Hum Reprod 2012; 27: 881-888
  • 16 Serafini PC, Silva ID, Smith GD. et al. Endometrial claudin-4 and leukemia inhibitory factor are associated with assisted reproduction outcome. Reprod Biol Endocrinol 2009; 7: 30
  • 17 Dimitriadis E, Nie G, Hannan NJ. et al. Local regulation of implantation at the human fetal-maternal interface. Int J Dev Biol 2010; 54: 313-322
  • 18 Sabry D, Nouh O, Marzouk S. et al. Pilot study on molecular quantitation and sequencing of endometrial cytokines gene expression and their effect on the outcome of in vitro fertilization (IVF) cycle. J Adv Res 2014; 5: 595-600
  • 19 Alam V, Bernardini L, Gonzales J. et al. A prospective study of echographic endometrial characteristics and pregnancy rates during hormonal replacement cycles. J Assist Reprod Genet 1993; 10: 215-219
  • 20 Abdalla HI, Brooks AA, Johnson MR. et al. Endometrial thickness: a predictor of implantation in ovum recipients?. Hum Reprod 1994; 9: 363-365
  • 21 Wu Y, Gao X, Lu X. et al. Endometrial thickness affects the outcome of in vitro fertilization and embryo transfer in normal responders after GnRH antagonist administration. Reprod Biol Endocrinol 2014; 12: 96
  • 22 Turnbull LW, Lesny P, Killick SR. Assessment of uterine receptivity prior to embryo transfer: a review of currently available imaging modalities. Hum Reprod Update 1995; 1: 505-514
  • 23 Friedler S, Schenker JG, Herman A. et al. The role of ultrasonography in the evaluation of endometrial receptivity following assisted reproductive treatments: a critical review. Hum Reprod Update 1996; 2: 323-335
  • 24 Raga F, Bonilla-Musoles F, Casañ EM. et al. Assessment of endometrial volume by three-dimensional ultrasound prior to embryo transfer: clues to endometrial receptivity. Hum Reprod 1999; 14: 2851-2854
  • 25 Batista MC, Cartledge TP, Zellmer AW. et al. A prospective controlled study of luteal and endometrial abnormalities in an infertile population. Fertil Steril 1996; 65: 495-502
  • 26 Graham RA, Seif MW, Aplin JD. et al. An endometrial factor in unexplained infertility. BMJ 1990; 300: 1428-1431
  • 27 Li TC, Dockery P, Rogers AW. et al. A quantitative study of endometrial development in the luteal phase: comparison between women with unexplained infertility and normal fertility. Br J Obstet Gynaecol 1990; 97: 576-582
  • 28 Klentzeris LD, Li TC, Dockery P. et al. The endometrial biopsy as a predictive factor of pregnancy rate in women with unexplained infertility. Eur J Obstet Gynecol Reprod Biol 1992; 45: 119-124
  • 29 Zhao J, Zhang Q, Li Y. The effect of endometrial thickness and pattern measured by ultrasonography on pregnancy outcomes during IVF-ET cycles. Reprod Biol Endocrinol 2012; 10: 100
  • 30 Papanikolaou EG, Kyrou D, Zervakakou G. et al. Follicular HCG endometrium priming for IVF patients experiencing resisting thin endometrium. A proof of concept study. J Assist Reprod Genet 2013; 30: 1341-1345
  • 31 Rinaldi L, Lisi F, Floccari A. et al. Endometrial thickness as a predictor of pregnancy after in-vitro fertilization but not after intracytoplasmic sperm injection. Hum Reprod 1996; 11: 1538-1541
  • 32 Yuval Y, Lipitz S, Dor J. et al. The relationships between endometrial thickness, and blood flow and pregnancy rates in in-vitro fertilization. Hum Reprod 1999; 14: 1067-1071
  • 33 De Geyter C, Schmitter M, De Geyter M. et al. Prospective evaluation of the ultrasound appearance of the endometrium in a cohort of 1,186 infertile women. Fertil Steril 2000; 73: 106-113
  • 34 Noyes RW. The underdeveloped secretory endometrium. Am J Obstet Gynecol 1959; 77: 929-945
  • 35 Klauber N, Rohan RM, Flynn E. et al. Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Nat Med 1997; 3: 443-446
  • 36 Cascio S, Ferla R, DʼAndrea A. et al. Expression of angiogenic regulators, VEGF and leptin, is regulated by the EGF/PI3K/STAT3 pathway in colorectal cancer cells. J Cell Physiol 2009; 221: 189-194
  • 37 Park HY, Kwon HM, Lim HJ. et al. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med 2001; 33: 95-102
  • 38 Gonzalez-Perez RR, Lanier V, Newman G. Leptinʼs pro-angiogenic signature in breast cancer. Cancers (Basel) 2013; 5: 1140-1162
  • 39 Krikun G. Endometriosis, angiogenesis and tissue factor. Scientifica (Cairo) 2012; 2012: 306830
  • 40 Adya R, Tan BK, Randeva HS. Differential effects of leptin and adiponectin in endothelial angiogenesis. J Diabetes Res 2015; 2015: 648239
  • 41 Gonzalez RR, Leavis P. Leptin upregulates beta3-integrin expression and interleukin-1beta, upregulates leptin and leptin receptor expression in human endometrial epithelial cell cultures. Endocrine 2001; 16: 21-28
  • 42 Carino C, Olawaiye AB, Cherfils S. et al. Leptin regulation of proangiogenic molecules in benign and cancerous endometrial cells. Int J Cancer 2008; 123: 2782-2790
  • 43 Funamoto M, Fujio Y, Kunisada K. et al. Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes. J Biol Chem 2000; 275: 10561-10566
  • 44 Kim EY, Choi HJ, Chung TW. et al. Water-extracted Perilla frutescens increases endometrial receptivity though leukemia inhibitory factor-dependent expression of integrins. J Pharmacol Sci 2016; 131: 259-266
  • 45 Chung TW, Park MJ, Kim HS. et al. Integrin αVβ3 and αVβ5 are required for leukemia inhibitory factor-mediated the adhesion of trophoblast cells to the endometrial cells. Biochem Biophys Res Commun 2016; 469: 936-940
  • 46 Senger DR, Ledbetter SR, Claffey KP. et al. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 1996; 149: 293-305
  • 47 Hall H, Hubbell JA. Matrix-bound sixth Ig-like domain of cell adhesion molecule L1 acts as an angiogenic factor by ligating alphavbeta3-integrin and activating VEGF-R2. Microvasc Res 2004; 68: 169-178
  • 48 Spyridopoulos I, Brogi E, Kearney M. et al. Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: balance between growth and death signals. J Mol Cell Cardiol 1997; 29: 1321-1330
  • 49 Zanetta L, Marcus SG, Vasile J. et al. Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int J Cancer 2000; 85: 281-288
  • 50 McLaren M, Elhadd TA, Greene SA. et al. Elevated plasma vascular endothelial cell growth factor and thrombomodulin in juvenile diabetic patients. Clin Appl Thromb 1999; 5: 21-24
  • 51 Pourtau J, Mirshahi F, Li H. et al. Cyclooxygenase-2 activity is necessary for the angiogenic properties of oncostatin M. FEBS Lett 1999; 459: 453-457
  • 52 Ware CB, Horowitz MC, Renshaw BR. et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 1995; 121: 1283-1299
  • 53 Winship A, Correia J, Zhang JG. et al. Leukemia inhibitory factor (LIF) inhibition during mid-gestation impairs trophoblast invasion and spiral artery remodelling during pregnancy in mice. PLoS One 2015; 10: e0129110
  • 54 Winship A, Correia J, Krishnan T. et al. Blocking endogenous leukemia inhibitory factor during placental development in mice leads to abnormal placentation and pregnancy loss. Sci Rep 2015; 5: 13237
  • 55 Hambartsoumian E. Endometrial leukemia inhibitory factor (LIF) as a possible cause of unexplained infertility and multiple failures of implantation. Am J Reprod Immunol 1998; 39: 137-143
  • 56 Piccinni MP, Beloni L, Livi C. et al. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat Med 1998; 4: 1020-1024
  • 57 Giess R, Tanasescu I, Steck T. et al. Leukaemia inhibitory factor gene mutations in infertile women. Mol Hum Reprod 1999; 5: 581-586
  • 58 Laird SM, Tuckerman EM, Dalton CF. et al. The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum Reprod 1997; 12: 569-574
  • 59 Tawfeek MA, Eid MA, Hasan AM. et al. Assessment of leukemia inhibitory factor and glycoprotein 130 expression in endometrium and uterine flushing: a possible diagnostic tool for impaired fertility. BMC Womens Health 2012; 12: 10
  • 60 Brinsden PR, Alam V, de Moustier B. et al. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil Steril 2009; 91: 1445-1447
  • 61 Strömblad S, Becker JC, Yebra M. et al. Suppression of p 53 activity and p 21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 1996; 98: 426-433
  • 62 Leavesley DI, Schwartz MA, Rosenfeld M. et al. Integrin beta 1- and beta 3-mediated endothelial cell migration is triggered through distinct signaling mechanisms. J Cell Biol 1993; 121: 163-170
  • 63 Bayless KJ, Salazar R, Davis GE. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. Am J Pathol 2000; 156: 1673-1683
  • 64 Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569-571
  • 65 Westlin WF. Integrins as targets of angiogenesis inhibition. Cancer J 2001; 7 (Suppl. 03) S139-S143
  • 66 Liu Z, Yu L, Wang X. et al. Integrin (αvβ3) Targeted RGD peptide based probe for cancer optical imaging. Curr Protein Pept Sci 2016; 17: 570-581
  • 67 Coughlan C, Sinagra M, Ledger W. et al. Endometrial integrin expression in women with recurrent implantation failure after in vitro fertilization and its relationship to pregnancy outcome. Fertil Steril 2013; 100: 825-830
  • 68 Sierra-Honigmann MR, Nath AK, Murakami C. et al. Biological action of leptin as an angiogenic factor. Science 1998; 281: 1683-1686
  • 69 Bouloumié A, Drexler HC, Lafontan M. et al. Leptin, the product of Ob gene, promotes angiogenesis. Circ Res 1998; 83: 1059-1066
  • 70 Kang SM, Kwon HM, Hong BK. et al. Expression of leptin receptor (Ob-R) in human atherosclerotic lesions: potential role in intimal neovascularization. Yonsei Med J 2000; 41: 68-75
  • 71 Banerjee P, Jana SK, Pasricha P. et al. Proinflammatory cytokines induced altered expression of cyclooxygenase-2 gene results in unreceptive endometrium in women with idiopathic recurrent spontaneous miscarriage. Fertil Steril 2013; 99: 179-187