Diabetologie und Stoffwechsel 2017; 12(04): 294-306
DOI: 10.1055/s-0043-112658
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Empagliflozin reduziert das Risiko für Mortalität sowie makro- und mikrovaskuläre Komplikationen bei Patienten mit Typ-2-Diabetes und bestehender kardiovaskulärer Erkrankung

Empagliflozin Reduces the Risk of Mortality, Macro- and Microvascular Events in Patients with Type 2 Diabetes and Established Cardiovascular Disease
Jochen Seufert
1   Abteilung Endokrinologie und Diabetologie, Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg
,
Jan-Christoph Galle
2   Klinik für Nephrologie und Dialyseverfahren, Märkische Kliniken GmbH Klinikum Lüdenscheid, Germany
,
Martina Manning
3   Medizinische Abteilung, Lilly Deutschland GmbH, Bad Homburg, Germany
,
Volkmar Schmid
4   Medical Affairs Deutschland, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
,
Michael Lehrke
5   Medizinische Klinik I, Klinik für Kardiologie, Pneumologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum Aachen, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

13. Februar 2017

30. Mai 2017

Publikationsdatum:
01. September 2017 (online)

Zusammenfassung

Patienten mit Typ-2-Diabetes mellitus haben auch bei optimierter Lipidsenkung, Blutdruckkontrolle und Blutzuckereinstellung ein erhöhtes Risiko für kardiovaskuläre Ereignisse. Zur Abbildung der kardiovaskulären Sicherheit neu zugelassener Antidiabetika verlangen die Arzneimittelbehörden FDA und EMA den Nachweis für Nichtunterlegenheit bezüglich kardiovaskulärer Sicherheit gegenüber Placebo in Endpunktstudien. Während für verschiedene neuere Antidiabetika bisher die Nichtunterlegenheit in kardiovaskulären Sicherheitsstudien gezeigt wurde, konnte mit Empagliflozin erstmals in der EMPA-REG OUTCOME®-Studie und nachfolgend mit Liraglutid in der LEADER-Studie eine präspezifizierte kardiovaskuläre Überlegenheit im Vergleich zu Placebo demonstriert werden; auch mit Semaglutid wurde in der SUSTAIN-6-Studie eine statistisch signifikante Reduktion kardiovaskulärer Ereignisse erreicht. Die Gabe von Empagliflozin, einem Hemmer des Natrium-Glukose-Cotransporters 2 (SGLT-2), zusätzlich zur antidiabetischen und kardiovaskulären Standardtherapie führte zu einer signifikanten relativen Risikoreduktion des primären kombinierten Endpunkts aus kardiovaskulärem Tod, nicht tödlichem Myokardinfarkt oder nicht tödlichem Schlaganfall um 14 % gegenüber Placebo. Diese Risikoreduktion wurde maßgeblich durch die Senkung der kardiovaskulären Mortalität um 38 % erreicht. Zudem zeigten sich gegenüber Placebo relative Risikoreduktionen von 35 % bzw. 39 % für stationäre Aufnahmen wegen Herzinsuffizienz bzw. für das Neuauftreten oder die Verschlechterung einer Nephropathie. Empagliflozin reduzierte die Gesamtmortalität relativ um 32 %. Welche Mechanismen den nachgewiesenen Risikoreduktionen zugrunde liegen, ist Gegenstand weiterer Untersuchungen. Diskutiert werden vor allem eine Entlastung des Herzens durch Ausscheidung von überschüssigem Natrium, Glukose und Wasser, hämodynamische Effekte an der Niere über eine Normalisierung des tubulo-glomerulären Feedbacks oder auch eine durch Ketonkörper energetisch günstigere Substratnutzung im vorgeschädigten Herzen. Empagliflozin war, mit Ausnahme einer erhöhten Rate an Genitalinfektionen, die generell mit dem Wirkmechanismus von SGLT-2-Hemmern assoziiert sind, gut verträglich.

Abstract

Patients with type 2 diabetes mellitus face an increased risk of cardiovascular events, even under conditions of optimal lipid reduction, blood pressure and blood glucose control. To ensure cardiovascular safety of novel antidiabetic drugs, FDA and EMA regulations require evidence of non-inferiority compared to placebo in cardiovascular outcome studies for approval. Previously, cardiovascular safety of various newer antidiabetic drugs was observed in dedicated non-inferiority trials. In contrast, the EMPA-REG OUTCOME® study was the first trial to demonstrate for empagliflozin, followed by the LEADER trial for liraglutide, prespecified cardiovascular superiority of an individual antidiabetic medication versus placebo. Subsequently, semaglutide showed a significant reduction in cardiovascular events in the SUSTAIN 6 trial. Administration of empagliflozin, a sodium glucose-linked cotransporter (SGLT-2) inhibitor, in addition to antidiabetic and cardiovascular standard of care medication led to a significant relative risk reduction by 14 % of the primary composite endpoint composed of cardiovascular death, non-fatal myocardial infarction, or non-fatal stroke as compared to placebo. This overall risk reduction was mainly driven by a significant 38 % reduction in cardiovascular death. Furthermore, empagliflozin reduced the relative risk of hospitalisations for heart failure, or incident or worsening nephropathy by 35 % and 39 %, respectively. Empagliflozin reduced the relative risk of all-cause mortality by 32 %. The underlying mechanisms for the observed risk reductions are not yet completely understood. Specifically, relieving the heart from excess glucose, sodium and water, effects on renal hemodynamics and restored tubuloglomerular feedback as well as a substrate shift towards ketone bodies resulting in better energy consumption in the diabetic heart are considered. Empagliflozin was well tolerated but associated with an increased incidence of genital infections, which are generally associated with the mode of action of SGLT-2 inhibitors.

 
  • Literatur

  • 1 Meigs JB. Epidemiology of cardiovascular complications in type 2 diabetes mellitus. Acta Diabetol 2003; 40 (Suppl. 02) S358-S361
  • 2 Sarwar N, Gao P, Seshasai SR. et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375: 2215-2222
  • 3 Shah AD, Langenberg C, Rapsomaniki E. et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol 2015; 3: 105-113
  • 4 Franco OH, Steyerberg EW, Hu FB. et al. Associations of diabetes mellitus with total life expectancy and life expectancy with and without cardiovascular disease. Arch Intern Med 2007; 167: 1145-1151
  • 5 Go AS, Mozaffarian D, Roger VL. et al. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 2013; 127 (01) e6-e245
  • 6 Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Therapie des Typ-2-Diabetes – Langfassung. 2013 zuletzt geändert: November 2014. Verfügbar unter: 1. Auflage. Version 3. http://www.versorgungsleitlinien.de/themen/diabetes2 / dm2_therapie
  • 7 American Diabetes Association. Cardiovascular Disease and Risk Management. Diabetes Care 2016; 39 (Suppl. 01) S60-S71
  • 8 UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837-853
  • 9 Hemmingsen B, Lund SS, Gluud C. et al. Targeting intensive glycaemic control versus targeting conventional glycaemic control for type 2 diabetes mellitus. Cochrane Database Syst Rev 2013; 11: CD008143
  • 10 Toth-Manikowski S, Atta MG. Diabetic Kidney Disease: Pathophysiology and Therapeutic Targets. J Diabetes Res 2015 2015. Article ID 697010
  • 11 Stewart JH, McCredie MR, Williams SM. et al. Trends in incidence of treated end-stage renal disease, overall and by primary renal disease, in persons aged 20–64 years in Europe, Canada and the Asia-Pacific region, 1998–2002. Nephrology (Carlton) 2007; 12 (05) 520-527
  • 12 Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol 2016; 12: 73-81
  • 13 National Kidney Foundation. 2015 Verfügbar unter: www.kidney.org/atoz/content/diabetes
  • 14 Gregg EW, Li Y, Wang J. et al. Changes in diabetes-related complications in the United States, 1990–2010. N Engl J Med 2014; 370: 1514-1523
  • 15 Hayward RA, Reaven PD, Wiitala WL. et al. Follow-up of Glycemic Control and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2015; 372: 2197-2206
  • 16 Holman RR, Paul SK, Bethel MA. et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359: 1577-1589
  • 17 Gerstein HC, Miller ME, Genuth S. et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med 2011; 364: 818-828
  • 18 Patel A, MacMahon S, Chalmers J. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560-2572
  • 19 Gerstein HC, Miller ME, Byington RP. et al. Effects of Intensive Glucose Lowering in Type 2 Diabetes. N Engl J Med 2008; 358: 2545-2559
  • 20 Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356: 2457-2471
  • 21 US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry: diabetes mellitus – evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. 2008 Verfügbar unter: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071627.pdf
  • 22 Zinman B, Wanner C, Lachin JM. et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373: 2117-2128
  • 23 Marso SP, Daniels GH, Brown-Frandsen K. et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016; 375: 311-322
  • 24 Marso SP, Bain SC, Consoli A. et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2016; 375: 1834-1844
  • 25 Gallwitz B, Merker L, Hohberg C. et al. Empagliflozin – Insulinunabhängige Kontrolle der Glykämieparameter bei Diabetes mellitus Typ 2 durch Inhibition des Natrium-Glukose-Cotransporters SGLT2. Diabetologie und Stoffwechsel 2015; 10: 247-265
  • 26 Zinman B, Inzucchi SE, Lachin JM. et al. Rationale, design, and baseline characteristics of a randomized, placebo-controlled cardiovascular outcome trial of empagliflozin (EMPA-REG OUTCOME™). Cardiovasc Diabetol 2014; 13: 102
  • 27 Häring HU, Merker L, Seewaldt-Becker E. et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 2014; 37: 1650-1659
  • 28 Roden M, Weng J, Eilbracht J. et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2013; 1: 208-219
  • 29 Rosenstock J, Jelaska A, Frappin G. et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 2014; 37: 1815-1823
  • 30 Fitchett D, Zinman B, Wanner C. et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 2016; 37: 1526-1534
  • 31 Wanner C, Inzucchi SE, Lachin JM. et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med 2016; 375: 323-334
  • 32 Scirica BM, Bhatt DL, Braunwald E. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369: 1317-1326
  • 33 White WB, Cannon CP, Heller SR. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369: 1327-1335
  • 34 Green JB, Bethel MA, Armstrong PW. et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2015; 373: 232-242
  • 35 Pfeffer MA, Claggett B, Diaz R. et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med 2016; 373: 2247-2257
  • 36 McMurray JJ, Gerstein HC, Holman RR. et al. Heart failure: a cardiovascular outcome in diabetes that can no longer be ignored. Lancet Diabetes Endocrinol 2014; 2: 843-851
  • 37 Meinert CL, Knatterud GL, Prout TE. et al. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970; 19: 789­-830
  • 38 UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837-853
  • 39 Patel A, MacMahon S, Chalmers J. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560-2572
  • 40 Monami M, Genovese S, Mannucci E. Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2013; 15: 938-953
  • 41 Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 2005; 294: 2581-2586
  • 42 Home PD, Pocock SJ, Beck-Nielsen H. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 2009; 373: 2125-2135
  • 43 Dormandy JA, Charbonnel B, Eckland DJ. et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 66: 1279-1289
  • 44 UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837-853
  • 45 Khunti K, Davies M, Maieed A. et al. Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study. Diabetes Care 2015; 38: 316-322
  • 46 Zinman B, Inzucchi SE, Lachin JM. et al. Empagliflozin and Cerebrovascular Events in Patients With Type 2 Diabetes Mellitus at High Cardiovascular Risk Stroke. 2017; 48: 1218-1225
  • 47 Kohler S, Salsali A, Hantel S. et al. Safety and Tolerability of Empagliflozin in Patients with Type 2 Diabetes. Clin Ther 2016; 38: 1299-1313
  • 48 Inzucchi SE, Zinman B, Wanner C. et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 2015; 12: 90-100
  • 49 Kahles F, Marx N. Aktuelle kardiovaskuläre Outcome-Studien bei Diabetes. Diabetologe 2016; 12: 88-95
  • 50 Rajasekeran H, Lytvyn Y, Cherney DZ. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int 2016; 89: 524-526
  • 51 Cherney DZI, Perkins BA, Soleymanlou N. et al. Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 1 Diabetes Mellitus. Circulation 2014; 129: 587-597
  • 52 Sattar N, McLaren J, Kristensen SL. et al. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms?. Diabetologia 2016; 59: 1333-1339
  • 53 Heerspink H, Perkins B, Fitchett D. et al. SGLT2 inhibitors in the treatment of diabetes: Cardiovascular and kidney effects, potential mechanisms and clinical applications. Circulation 2016; 134: 752-772
  • 54 Mudaliar S, Alloju S, Henry R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care 2016; 39: 1115-1122
  • 55 Ferranini E, Mark M, Mayoux E. Protection in the EMPA-REG OUTCOME™ trial: a „thrifty substrate” hypothesis. Diabetes Care 2016; 39: 1108-1114
  • 56 Neal B, Perkovic V, de Zeeuw D. et al. Rationale, design, and baseline characteristics of the Canagliflozin Cardiovascular Assessment Study (CANVAS)--a randomized placebo-controlled trial. Am Heart J 2013; 166: 217-223.e11
  • 57 Salsali A, Kim G, Woerle HJ. et al. Cardiovascular safety of empagliflozin in patients with type 2 diabetes: a meta-analysis of data from randomized placebo-controlled trials. Diabetes Obes Metabol 2016; 18: 1034-1040
  • 58 Landgraf R, Kellerer M, Fach E. et al. Praxisempfehlungen DDG/DGIM – Therapie des Typ-2-Diabetes. Diabetologie und Stoffwechsel 2015; 11 (Suppl. 02) 140-151
  • 59 Goldenberg R, Clement M, Hanna A. et al. Policies, Guidelines and Consensus Statements – Pharmacologic Management of Type 2 Diabetes: 2016 Interim Update. Can J Diabetes 2016; 40: 193-195
  • 60 American Diabetes Association. Standards of Medical Care in Diabetes – Position Statements. Diabetes Care 2016; 39 (Suppl. 01) S52-S71
  • 61 Garber AJ, Abrahamson MJ, Barzilay JI. et al. Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive Type 2 Diabetes Management Algorithm – 2016 Executive Summary. Endocr Pract 2016; 22: 84-113
  • 62 Piepoli MF, Hoes AW, Agewall S. et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2016; 37: 2315-2381
  • 63 Ponikowski P, Voors AA, Anker SD. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail 2016; 18: 891-975
  • 64 Gemeinsamer Bundesausschuss. Tragende Gründe zum Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII – Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V – Empagliflozin. 2016 Verfügbar unter: https://www.g-ba.de/downloads/40-268-3955/2016-09-01_AM-RL-XII_Empagliflozin_D-214_TrG.pdf
  • 65 Neal B, Perkovic V, Mahaffey KW. et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017 DOI: 10.1056/NEJMoa1611925