Ultraschall Med 2017; 38(06): 626-632
DOI: 10.1055/s-0043-113818
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

The Incidence of Chromosomal Aberrations in Prenatally Diagnosed Isolated Agenesis of the Corpus Callosum

Die Inzidenz von Chromosomenaberrationen in pränatal diagnostizierter isolierter Agenesie des Corpus callosums
Anna Marlene Rüland
1   Department of Obstetrics & Prenatal Medicine, University of Bonn, Germany
,
Karl-Philipp Gloning
2   Prenatal Medicine Munich, Germany
,
Matthias Albig
3   Center for Prenatal Medicine and Human Genetics, Berlin, Germany
,
Karl-Oliver Kagan
4   Department of Obstetrics & Gynecology, University of Tübingen, Germany
,
Rüdiger Hammer
5   Prenatal Medicine and Human Genetics, praenatal.de, Düsseldorf, Germany
,
Michael Schälike
6   Center for Prenatal Medicine and Human Genetics, Nuremberg, Germany
,
Christoph Berg
1   Department of Obstetrics & Prenatal Medicine, University of Bonn, Germany
7   Department of Prenatal Medicine of Gynecologic Sonography, University of Cologne, Germany
,
Ulrich Gembruch
1   Department of Obstetrics & Prenatal Medicine, University of Bonn, Germany
,
Annegret Geipel
1   Department of Obstetrics & Prenatal Medicine, University of Bonn, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

07. September 2016

10. Mai 2017

Publikationsdatum:
25. September 2017 (online)

Abstract

Purpose To establish the prevalence of chromosomal aberrations in fetuses with an apparently isolated agenesis of the corpus callosum (ACC) on prenatal ultrasound.

Materials & Methods This was a retrospective study of complete isolated ACC at the time of ultrasound evaluation with respect to karyotype information. Within this group, a subgroup with non-malformation minor abnormalities, such as a single umbilical artery (SUA), polyhydramnios or fetal growth restriction (FGR), was investigated.

Results Complete ACC was diagnosed in 343 cases. Of them, 143 (41.6 %) were isolated, with 16 fetuses showing additional minor findings. In 76.2 % (109/143) karyotyping was performed. Additional array CGH analysis was performed in 7.7 % (11/143). Chromosomal aberrations were found in 4.6 % (5/109) overall, in 3.1 % (3/98) of those without any additional sonographic findings (all represented mosaic trisomy 8) and in 18.2 % (2/11) of those with minor abnormalities. The prevalence of pathogenic submicroscopic copy number variant (CNV) was 9 % (1/11).

Conclusion Fetal karyotyping is recommended in ACC, as trisomy 8 mosaicism should be considered despite otherwise unremarkable ultrasound. The role of novel techniques such as array CGH and its implication has to be explored in prospective studies.

Zusammenfassung

Ziel Untersuchung der Prävalenz chromosomaler Aberrationen bei Feten mit pränatal sonographisch isolierter Agenesie des Corpus callosums (ACC).

Material und Methoden Retrospektive Analyse der Daten zur Karyotypisierung bei Feten mit Verdacht auf sonografisch isolierte komplette CCA. Als Untergruppe wurden die Daten von Feten mit milden (,minor’) Auffälligkeiten, wie singuläre Nabelschnurarterie, Polyhydramnion oder Wachstumsretardierung ausgewertet.

Ergebnisse Eine vollständige ACC wurde in 343 Fällen diagnostiziert. Hiervon waren 143 (41,6 %) isoliert, 16 dieser Feten zeigten milde Auffälligkeiten, jedoch keine Fehlbildungen. Informationen zum Karyotyp waren in 76,2 % (109/143) verfügbar. Eine zusätzliche Array CGH Analyse wurde in 7,7 % (11/143) durchgeführt. Insgesamt zeigten 4,6 % (5/109) der Feten chromosomale Auffälligkeiten, davon 3,1 % (3/98; alle mit Mosaik Trisomie 8) in der Gruppe der isolierten ACC und 18,2 % (2/11) in der Untergruppe mit „minor“ Anomalien. Die Prävalenz von pathogenen submikroskopischen Copy Number Variationen (CNV) lag bei 9 % (1/11).

Schlussfolgerungen Eine Karyotypisierung ist auch bei Verdacht auf sonografisch isolierte ACC empfohlen, da trotzdem eine Mosaik-Trisomie 8 vorliegen kann. Der Einsatz neuerer genetischer Methoden wie Array CGH und deren Wertigkeit muss in weiteren prospektiven Studien untersucht werden.

 
  • References

  • 1 Pashaj S, Merz E. Detection of Fetal Corpus Callosum Abnormalities by Means of 3D Ultrasound. Ultraschall in Med 2016; 37: 185-194
  • 2 Paul LK, Brown WS, Adolphs R. et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nature Reviews Neuroscience 2007; 8: 287-299
  • 3 Moutard M-L, Kieffer V, Feingold J. et al. Isolated corpus callosum agenesis: a ten-year follow-up after prenatal diagnosis (How are the children without corpus callosum at 10 years of age?). Prenat Diagn 2012; 32: 277-283
  • 4 Ruland AM, Berg C, Gembruch U. et al. Prenatal Diagnosis of Anomalies of the Corpus Callosum over a 13-Year Period. Ultraschall in Med 2016; 37: 598-603
  • 5 Glass HC, Shaw GM, Ma C. et al. Agenesis of the corpus callosum in California 1983–2003: a population-based study. Am J Med Genet A 2008; 146A: 2495-2500
  • 6 Santo S, D'Antonio F, Homfray T. et al. Counseling in fetal medicine: agenesis of the corpus callosum. Ultrasound in Obstetrics & Gynecology 2012; 40: 513-521
  • 7 De Wit MC, Srebniak MI, Govaerts LCP. et al. Additional value of prenatal genomic array testing in fetuses with isolated structural ultrasound abnormalities and a normal karyotype: a systematic review of the literature. Ultrasound in Obstetrics & Gynecology 2014; 43: 139-146
  • 8 Hillman SC, McMullan DJ, Hall G. et al. Use of prenatal chromosomal microarray: prospective cohort study and systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology 2013; 41: 610-620
  • 9 Hillman SC, Pretlove S, Coomarasamy A. et al. Additional information from array comparative genomic hybridization technology over conventional karyotyping in prenatal diagnosis: a systematic review and meta-analysis. Ultrasound in Obstetrics & Gynecology 2011; 37: 6-14
  • 10 Schumann M, Hofmann A, Krutzke SK. et al. Array-based molecular karyotyping in fetuses with isolated brain malformations identifies disease-causing CNVs. J Neurodev Disord 2016; 8: 11
  • 11 Sajan SA, Fernandez L, Nieh SE. et al. Both rare and de novo copy number variants are prevalent in agenesis of the corpus callosum but not in cerebellar hypoplasia or polymicrogyria. PLoS Genet 2013; 9: e1003823
  • 12 OMIM Database. http://www.ncbi.nlm.nih.gov/omim
  • 13 Alby C, Malan V, Boutaud L. et al. Clinical, genetic and neuropathological findings in a series of 138 fetuses with a corpus callosum malformation. Birth Defects Res A Clin Mol Teratol 2016; 106: 36-46
  • 14 Boland E, Clayton-Smith J, Woo VG. et al. Mapping of deletion and translocation breakpoints in 1q44 implicates the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of the corpus callosum. Am J Hum Genet 2007; 81: 292-303
  • 15 Palmer EE, Mowat D. Agenesis of the corpus callosum: a clinical approach to diagnosis. Am J Med Genet C Semin Med Genet 2014; 166C: 184-197
  • 16 Sherr EH, Owen R, Albertson DG. et al. Genomic microarray analysis identifies candidate loci in patients with corpus callosum anomalies. Neurology 2005; 65: 1496-1498
  • 17 D'Antonio F, Pagani G, Familiari A. et al. Outcomes Associated With Isolated Agenesis of the Corpus Callosum: A Meta-analysis. Pediatrics 2016 138. pii:e20160445
  • 18 Mangione R, Fries N, Godard P. et al. Neurodevelopmental outcome following prenatal diagnosis of an isolated anomaly of the corpus callosum. Ultrasound in Obstetrics & Gynecology 2011; 37: 290-295
  • 19 Moes P, Schilmoeller K, Schilmoeller G. Physical, motor, sensory and developmental features associated with agenesis of the corpus callosum. Child Care Health Dev 2009; 35: 656-672
  • 20 Moutard ML, Kieffer V, Feingold J. et al. Agenesis of corpus callosum: prenatal diagnosis and prognosis. Child's nervous system: Child's nervous system 2003; 19: 471-476
  • 21 Chen CP, Chen M, Pan YJ. et al. Prenatal diagnosis of mosaic trisomy 8: clinical report and literature review. Taiwan J Obstet Gynecol 2011; 50: 331-338
  • 22 Camurri L, Caselli L, Manenti E. True mosaicism and pseudomosaicism in second trimester fetal karyotyping. A case of mosaic trisomy 8. Prenat Diagn 1988; 8: 168
  • 23 Pilu G, Sandri F, Perolo A. et al. Sonography of fetal agenesis of the corpus callosum: a survey of 35 cases. Ultrasound in Obstetrics and Gynecology 1993; 3: 318-329
  • 24 Fratelli N, Papageorghiou AT, Prefumo F. et al. Outcome of prenatally diagnosed agenesis of the corpus callosum. Prenat Diagn 2007; 27: 512-517
  • 25 Crolla JA, Wapner R, Van Lith JMM. Controversies in prenatal diagnosis 3: should everyone undergoing invasive testing have a microarray?. Prenat Diagn 2014; 34: 18-22
  • 26 Scott SA, Cohen N, Brandt T. et al. Detection of low-level mosaicism and placental mosaicism by oligonucleotide array comparative genomic hybridization. Genet Med 2010; 12: 85-92
  • 27 Hoang S, Ahn J, Mann K. et al. Detection of mosaicism for genome imbalance in a cohort of 3042 clinical cases using an oligonucleotide array CGH platform. Eur J Med Genet 2011; 54: 121-129
  • 28 Bruno DL, White SM, Ganesamoorthy D. et al. Pathogenic aberrations revealed exclusively by single nucleotide polymorphism (SNP) genotyping data in 5000 samples tested by molecular karyotyping. Journal of Medical Genetics 2011; 48: 831-839
  • 29 Wapner RJ, Martin CL, Levy B. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 2012; 367: 2175-2184
  • 30 Crolla JA, Wapner R, Van Lith JM. Controversies in prenatal diagnosis 3: should everyone undergoing invasive testing have a microarray?. Prenat Diagn 2014; 34: 18-22
  • 31 Schmid M, Stary S, Springer S. et al. Prenatal microarray analysis as second-tier diagnostic test: single-center prospective study. Ultrasound in Obstetrics & Gynecology 2013; 41: 267-273