Planta Med 2018; 84(01): 42-48
DOI: 10.1055/s-0043-114425
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

The Identification of Araliaceae Species by ITS2 Genetic Barcoding and Pollen Morphology

Arkadiy Reunov
1   University of Ottawa Heart Institute, Ottawa, Canada
,
Galina Reunova
2   Federal Biodiversity Scientific Center, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
,
Dmitry Atopkin
2   Federal Biodiversity Scientific Center, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
,
Yulia Reunova
3   National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
,
Tamara Muzarok
2   Federal Biodiversity Scientific Center, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
,
Evgeny Zakharov
4   Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, Guelph, Canada
,
Yury Zhuravlev
2   Federal Biodiversity Scientific Center, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
› Author Affiliations
Further Information

Publication History

received 10 November 2016
revised 24 May 2017

accepted 10 June 2017

Publication Date:
12 July 2017 (online)

Abstract

The genetic barcode ITS2 (ITS: internal transcribed spacer) and pollen morphology were used for the identification of the pharmacologically valuable wild Araliaceae species Panax ginseng, Oplopanax elatus, Aralia elata, Aralia continentalis, Eleutherococcus senticosus, and Eleutherococcus sessiliflorus inhabiting the natural forests of Primorye, Russia. The ITS2 locus successfully identified all six species, which supports the use of ITS2 as a standard barcode for medicinal plants. However, the ITS2 locus was insufficient for intra-specific discrimination in these species, neither within Primorye nor from other world representatives within GenBank. Araliaceae pollen was confirmed to undergo size-reducing metamorphosis. The final morphotypes were species-specific for each of the six species but could not discriminate intra-species geographic localities within Primorye. The morphologies of the final pollen morphotypes from homologous species inhabiting other parts of the world are not yet known. Therefore, whether pollen is applicable for Araliaceae intra-species discrimination between Primorye and other world localities could not be established. Based on these findings, we propose that the ITS2 genetic barcode and the final pollen morphotypes are suitable for the identification of Araliaceae species. However, further studies will be needed to determine the suitability of genetic and pollen traits for Araliaceae geographic authentication.

 
  • References

  • 1 Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 2008; 29: 1109-1118
  • 2 Kim SK, Park JH. Trends in ginseng research in 2010. J Ginseng Res 2011; 35: 389-398
  • 3 Yuan HD, Kim JT, Kim SH, Chung SH. Ginseng and diabetes: the evidences from in vitro, animal and human studies. J Ginseng Res 2012; 36: 27-39
  • 4 Kang S, Min H. Ginseng, the ʼimmunity boostʼ: the effects of Panax ginseng on immune system. J Ginseng Res 2012; 36: 354-368
  • 5 Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013; 37: 8-29
  • 6 Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014; 38: 161-166
  • 7 Dou DQ, Xu XY, Zhao YR, Kang TG, Liu FY, Kuang HX, Smith DC. Studies of the anti-psoriasis constituents of Oplopanax elatus Nakai. Nat Prod Res 2009; 23: 334-342
  • 8 Liu PP, Qu J, Dou DQ, Kang TG, Smith D. Determination of anti-cancer constituents in Oplopanax horridus and Oplopanax elatus . J Chem Soc Pac 2012; 34: 417-423
  • 9 Li M, Lu W. Pharmacological research progress of Aralia elata . Medical Recapitulate 2009; 20: 3157-3160
  • 10 Maslov LN, Lishmanov YB, Arbuzov AG, Krylatov AV, Budankova EV, Konkovskaya YN, Burkova VN, Severova EA. Antiarrhythmic activity of phytoadaptogens in short-term ischemia-reperfusion of the heart and postinfarction cardiosclerosis. Bull Exp Biol Med 2009; 147: 331-334
  • 11 Kim JH, Shin EH, Lee HY, Lee BG, Park SH, Moon DI, Goo GC, Kwon DY, Yang HJ, Kim OJ, Oh HG. Immunostimulating effects of extract of Acanthopanax sessiliflorus . Exp Anim 2013; 62: 247-253
  • 12 Zhuravlev YN, Kolyada AS. [Araliaceae: Ginseng and others]. Vladivostok: Dalnauka Press; 1996
  • 13 Dardymov IV, Khasina EI. [Eleutherococc: Secrets of “Panacei”]. Novosibirsk: Nauka Press; 1993
  • 14 Mahankov VV, Burundukova ОL, Muzarok ТI, Uvarova NI, Zhuravlev YN. The contents of ginsenosids in P. ginseng C.A. Mey leaves in relation of plant age. Plant resourses 2007; 43: 107-115
  • 15 Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci 2003; 270: 313-321
  • 16 Parveen I, Gafner S, Techen N, Murch SJ, Khan IA. DNA Barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations. Planta Med 2016; 82: 1225-1235
  • 17 Liu Z, Zeng H, Yang D, Chu G, Yuan Z, Chen S. Applying DNA barcodes for identification of plant species in the family Araliaceae. Gene 2012; 499: 76-80
  • 18 Zhu X, Zhang Y, Liu X, Hou D, Gao T. Authentication of commercial processed Glehniae Radix (Beishashen) by DNA barcodes. Chin Med 2015; 10: 35
  • 19 Pang X, Shi L, Song J, Chen X, Chen S. Use of the potential DNA barcode ITS2 to identify herbal materials. J Nat Med 2013; 67: 571-575
  • 20 Kim WJ, Moon BC, Yang S, Han KS, Choi G, Lee AY. Rapid authentication of the herbal medicine plant species Aralia continentalis Kitag. and Angelica biserrata C.Q. Yuan and R.H. Shan using ITS2 sequences and multiplex-scar markers. Molecules 2016; 21: 270
  • 21 Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, Chen ZD, Zhou SL, Chen CL, Yang JB, Fu CX, Zeng CX, Yan HF, Zhu YJ, Sun YS, Chen CY, Zhao L, Wang K, Yang T, Duan GW. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A 2011; 108: 19641-19646
  • 22 Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C. Validation of ITS2 region as a novel DNA barcode for identifying of medicinal plant species. PLoS One 2010; 5: e8613
  • 23 Yao H, Song JY, Liu C, Luo K, Han JP, Li Y, Pang X, Xu H, Zhu Y, Xiao P, Chen S. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 2010; 5: e13102
  • 24 Will KW, Mishler BD, Wheeller QD. The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol 2005; 54: 844-851
  • 25 Brinckmann JA. Geographical indications for medical plants: globalization, climate change, quality and market implications for geo-authentic botanicals. Mod Res Chin Mat Med 2015; 1: 16-23
  • 26 Wen J, Nowicke JW. Pollen ultrastructure of Panax (the ginseng genus, Araliaceae), an eastern Asian and eastern North American disjunct genus. Amer J Bot 1999; 86: 1624-1636
  • 27 Reunov AA, Reunova GD, Alexandrova YN, Muzarok TI, Zhuravlev YN. The pollen metamorphosis phenomenon in Panax ginseng, Aralia elata and Oplopanax elatus; an addition to discussion concerned the Panax affinity in Araliaceae. Zygote 2009; 17: 1-17
  • 28 Artyukova EV, Gontcharov AA, Kozyrenko MM, Reunova GD, Zhuravlev YN. Phylogenetic relationships of the Far Eastern Araliaceae inferred from ITS sequences of nuclear rDNA. Russ J Genetics 2005; 41: 649-658
  • 29 Ali MA, Al-Hemaid FM, Lee J, Choudhary RK, Pandey AK, Al-Harbi NA. Assessing nrDNA ITS2 sequence based molecular signature of ginseng for potential use in quality control of drug. Afr J Pharm Pharmacol 2012; 6: 2775-2781
  • 30 Chen X, Liao B, Song J, Pang X, Han J, Chen S. A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding. Gene 2013; 530: 39-43
  • 31 Samukawa K, Yamashita H, Matsudo H, Kubo M. Simultaneous analysis of ginsenosides of various ginseng radix by HPLC. Yakugaku Zasshi 1995; 115: 241-249
  • 32 Wang A, Wang CZ, Wu JA, Osinski J, Yuan CS. Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography. Phytochem Anal 2005; 16: 272-277
  • 33 Pan Y, Wang X, Sun G, Li F, Gong X. Application of RAD sequencing for evaluating the genetic diversity of domesticated Panax notoginseng (Araliaceae). PLoS One 2016; 11: e0166419
  • 34 Hammett T. There is more to a forest than trees. Available at. http://www.ntfpinfo.us/docs/other/VirginiaTech2002-MoreToForestThanTrees.pdf Accessed July 6, 2017
  • 35 Zhuravlev YN, Reunova GD, Kats IL, Muzarok TI. Molecular variation of wild Panax ginseng C.A. Meyer (Araliaceae) by AFLP markers. Chin Med 2010; 5: 21
  • 36 Reunova GD, Kats IL, Zhuravlev YN. Genetic variation of Oplopanax elatus (Araliaceae) populations estimated using DNA molecular markers. Dokl Biol Sci 2010; 433: 252-256
  • 37 Wright S. The genetic structure of populations. Ann Eugen 1951; 15: 323-354
  • 38 Zuo Y, Chen Z, Kondo K, Funamoto T, Wen J, Zhou S. DNA barcoding of Panax species. Planta Med 2011; 77: 182-187
  • 39 Reunov AA, Reunova GD, Zhuravlev YN. Morphological study of pollen differentiation in mature anthers of Aralia elata, Aralia continentalis, and Aralia cordata (Araliaceae). Dokl Biol Sci 2007; 417: 465-468
  • 40 Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792-1797
  • 41 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731-2739
  • 42 Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406-425
  • 43 Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111-120