Planta Med 2018; 84(01): 65-72
DOI: 10.1055/s-0043-115224
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Decontamination of Mikania glomerata Leaves by Gamma Irradiation: Coumarin Determination by HPLC-DAD, Microbiological Control and Genotoxicological Studies

Marcos Martins Gouvêa
1   Pró-Reitoria de Extensão, LURA, Universidade Federal Fluminense, Niterói, Brazil
2   Instituto Vital Brazil, LDNF, Niterói, Brazil
9   Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
,
Samara Cristina Ferreira-Machado
3   Instituto de Biologia Roberto Alcântara Gomes, LCR, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4   Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Brazil
,
Thalita Martins da Silva
1   Pró-Reitoria de Extensão, LURA, Universidade Federal Fluminense, Niterói, Brazil
2   Instituto Vital Brazil, LDNF, Niterói, Brazil
,
Julien Silva Lima
3   Instituto de Biologia Roberto Alcântara Gomes, LCR, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
,
Cláudio Sérgio Corrêa Lau
3   Instituto de Biologia Roberto Alcântara Gomes, LCR, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
,
Luciana Maria Ramires Esper
5   Programa de Pós-Graduação em Ciências Aplicadas a Produtos da Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
6   Departamento de Bromatologia, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
,
Samanta Cardozo Mourão
1   Pró-Reitoria de Extensão, LURA, Universidade Federal Fluminense, Niterói, Brazil
2   Instituto Vital Brazil, LDNF, Niterói, Brazil
5   Programa de Pós-Graduação em Ciências Aplicadas a Produtos da Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
7   Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
,
Elizabeth Valverde Macedo
1   Pró-Reitoria de Extensão, LURA, Universidade Federal Fluminense, Niterói, Brazil
2   Instituto Vital Brazil, LDNF, Niterói, Brazil
7   Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
,
Helio de Carvalho Vital
8   Centro Tecnológico do Exército, Rio de Janeiro, Brazil
,
Edson Ramos Andrade
8   Centro Tecnológico do Exército, Rio de Janeiro, Brazil
,
Annibal Duarte Pereira Netto
9   Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
10   Departamento de Química Analítica, LaQAFA, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
,
Flávia Ferreira de Carvalho Marques
9   Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
10   Departamento de Química Analítica, LaQAFA, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
,
Carlos Augusto de Freitas Peregrino
1   Pró-Reitoria de Extensão, LURA, Universidade Federal Fluminense, Niterói, Brazil
2   Instituto Vital Brazil, LDNF, Niterói, Brazil
7   Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
› Author Affiliations
Further Information

Publication History

received 20 November 2016
revised 08 June 2017

accepted 22 June 2017

Publication Date:
12 July 2017 (online)

Abstract

Gamma irradiation as a decontaminating physical agent could be an important tool in the production chain of herbal medicines by improving the microbiological quality of raw materials and the safety of final products. This study was undertaken to investigate the genotoxic potential and eventual chemical modifications of a batch of Mikania glomerata raw material decontaminated by different doses of gamma irradiation (2.0, 3.5, and 5.0 kGy), using a cesium-137 source. DNA damage was assessed in vitro by agarose gel electrophoresis in regard to double-chain breaks of plasmid pUC 9.1 DNA and in vivo by micronucleus test in bone marrow cells of Wistar rats. Cytotoxicity in bone marrows was assessed by scoring polychromatic and normochromatic erythrocytes ratio. An HPLC-DAD method was adapted and validated for the enhancement of coumarin selectivity from the other matrix constituents. The microbial load was satisfactorily reduced, leading to sterilization at the highest dose. Genotoxic and cytotoxic effects were not increased in the in vitro and in vivo models. The concentration of coumarin and the chromatographic profiles of the hydroalcoholic plant extracts (ethanol 70% v/v) were not modified after such process. Therefore, this work suggests that gamma irradiation of M. glomerata raw material is suitable and safe for microbiological control purposes at the employed doses.

Supporting Information

 
  • References

  • 1 Balagamwala EH, Chao ST, Suh JH. Principles of radiobiology of stereotactic radiosurgery and clinical applications in the central nervous system. Technol Cancer Res Treat 2012; 11: 3-13
  • 2 Silva RC, Silva RM, Aquino KAS. A interação da radiação gama com a matéria no processo de esterilização. Rev Virtual Quim 2014; 6: 1624-1641
  • 3 [no authors listed] ISPM 18. Guidelines for the Use of Irradiation as a Phytosanitary Measure. Rome: FAO; 2003
  • 4 Hartwig A, Pelzer A, Burnouf D, Titéca H, Delincée H, Briviba K, Soika C, Hodapp C, Raul F, Miesch M, Werner D, Horvatovich P, Marchioni E. Toxicological potential of 2-alkylcyclobutanones–specific radiolytic products in irradiated fat-containing food-in bacteria and human cell lines. Food Chem Toxicol 2007; 45: 2581-2591
  • 5 Kume T, Furuta M, Todoriki S, Uenoyama N, Kobayashi Y. Status of food irradiation in the world. Radiat Phys Chem 2009; 78: 222-226
  • 6 Jan S, Parween T, Siddiqi TO. Mahmooduzzafar. Effect of gamma radiation on morphological, biochemical, and physiological aspects of plants and plant products. Environ Rev 2012; 20: 17-39
  • 7 Hazekamp A. Evaluating the effects of gamma-irradiation for decontamination of medicinal Cannabis. Front Phamacol 2016; 7: 108-112
  • 8 Satomi LC, Soriani RR, Pinto TJA. Descontaminação de drogas vegetais empregando irradiação gama e óxido de etileno: aspectos microbianos e químicos. Braz J Pharm Sci 2005; 41: 445-450
  • 9 Hasanain F, Guenther K, Mullett WM, Craven E. Gamma sterilization of pharmaceuticals – a review of the irradiation of excipients, active pharmaceutical ingredients, and final drug product formulations. PDA J Pharm Sci Technol 2014; 68: 113-137
  • 10 Garg N, Gupta PC. Irradiation: a Technique for microbial Decontamination of medicinal Plants. In: Garg N, Abdel-Aziz SM, Aeron A. eds. Microbes in Foods and Herbs. Springer: Basel; 2016: 225-237
  • 11 Federal Office of Consumer Protection and Food Safety. Report on irradiated food. Available at. http://www.bvl.bund.de/EN/01_Food/_01_tasks/02_OfficialFoodControl/09_IrradiadetFood/IrradiadetFood_node.html Accessed January 8, 2017
  • 12 U.S. Food and Drugs Administration. Food facts. Food irradiation: what you need to know. Available at http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/UCM262295.pdf Accessed January 8, 2017
  • 13 Health Canada. Food irradiation. Available at. http://www.hc-sc.gc.ca/fn-an/securit/irridation/index-eng.php Accessed January 8, 2017
  • 14 Chmielewski AG, Berejka AJ. Trends in Radiation Sterilization of Health Products. Vienna: IAEA; 2008
  • 15 Brazilian Health Regulatory Agency. Brazilian Pharmacopoeia. 5th ed. Vol. 1. Brasília: Anvisa; 2010
  • 16 Signoretti EC, Valvo L, Santucci M, Onori S, Fattibene P, Vincieri FF, Mulinacci M. Ionizing radiation induced effects on medicinal vegetable products. Cascara bark. Radiat Phys Chem 1998; 53: 525-531
  • 17 Koseki PM, Villavicencio ALCH, Brito MS, Nahme LC, Sebastião KI, Rela PR, Almeida-Muradian LB, Mancini-Filho J, Freitas PCD. Effects of irradiation in medicinal and eatable herbs. Radiat Phys Chem 2002; 63: 681-684
  • 18 Pinto TJA, Silva JMF, Kikuchi IS, Nemtanu NR. Alterations in herbs submitted to radiation decontamination. In: Camilleri AN. ed. Radiation Physics Research Progress. 1st ed.. New York: Nova Science Publishers; 2008: 1-9
  • 19 Musa HAA, Ahmed EEA, Osman GAM, Ali HA, Ludwig-Muller J. Microbial load and stability of some phytochemical components of selected Sudanese medicinal plant materials as affected by gamma irradiation. Inter J Sci Nature 2011; 2: 204-209
  • 20 Thongphazuk P, Thongphazuk J. Effects of irradiation on active components of medicinal plants: a review. RJAS 2012; 2: 57-71
  • 21 Fang X, Wu J. Feasibility of sterilizing traditional Chinese medicines by gamma irradiation. Radiat Phys Chem 1998; 52: 53-58
  • 22 Yu YB, Jeong IY, Park HR, Oh H, Jung U, Jo SK. Toxicological safety and stability of the components of an irradiated Korean medicinal herb, Paeoniae Radix. Radiat Phys Chem 2004; 71: 115-119
  • 23 Napimoga MH, Yatsuda R. Scientific evidence for Mikania laevigata and Mikania glomerata as a pharmacological tool. J Pharm Pharmacol 2010; 62: 809-820
  • 24 Ministério da Saúde, Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Assistência Farmacêutica e Insumos Estratégicos. Formulário terapêutico Nacional 2013: Rename 2013. 8th ed. Brasília, DF: Ministério da Saúde; 2013: 200
  • 25 Katusin-Razem B, Novak B, Razem D. Microbiological decontamination of botanical raw materials and corresponding pharmaceutical products by irradiation. Radiat Phys Chem 2001; 62: 261-275
  • 26 Kneifel W, Czech E, Kopp B. Microbial contamination of medicinal plants – a review. Planta Med 2002; 68: 5-15
  • 27 Brazilian National Agency for Sanitary Vigilance. Resolution no. 899: Guide for Validation of Analytical and Bioanalytical Methods. Brasília, Brazil: Anvisa; 2003
  • 28 National Institute of Metrology, Quality and Technology (INMETRO). Guidance Validation of analytical Methods, DOQ-CGCRE-008. Brasilia, Brazil: Inmetro; 2010
  • 29 International Conference on Harmonization. Validation of analytical procedures: text and methodology Q2 (R1). Published November 2005. Available at. https://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf Accessed July 7, 2017
  • 30 Riley CM, Rosanske TW. Development and Validation of analytical Methods. 1st ed.. Oxford: Elsevier; 1996
  • 31 Pereira AMS, Câmara FLA, Celeghini RMS, Vilegas JHY, Lanças FM, França SC. Seasonal variation in coumarin content of Mikania glomerata . J Herbs Spices Med Plants 2000; 7: 1-10
  • 32 Gasparetto JC, Francisco TMG, Pontarolo R. Chemical constituents of Mikania glomerata Spreng and Mikania laevigata Sch. Bip. ex Baker. J Med Plants Res 2013; 7: 753-765
  • 33 Peregrino CAF, Leitão SG. Chromatographical profiles of fluid extracts and tinctures obtained from Mikania glomerata Sprengel sterilized by gamma ray irradiation. Braz J Pharmacog 2005; 15: 237-242
  • 34 Costa RJ, Diniz A, Mantovani MS, Jordão BQ. In vitro study of mutagenic potential of Bidens pilosa Linné and Mikania glomerata Sprengel using the comet and micronucleus assays. J Ethnopharmacol 2008; 118: 86-93
  • 35 Choy WN. Regulatory genetic Toxicology Tests. In: Choy WN. ed. Genetic Toxicology and Cancer Risk Assessment. New York: Marcel Dekker; 2001: 93-113
  • 36 OECD/OCDE 420. OECD Guidelines for testing of chemicals. Acute oral toxicity – fixed dose procedure; 2001. Available at: http://www.oecd-ilibrary.org/docserver/download/9742001e.pdf?expires=1499540384&id=id&accname=guest&checksum=4EB4055694CB8431BFC48AD7289FFEE5 Accessed July 7, 2017
  • 37 Barbosa LC, Morais MD, Paula CA, Ferreira MCS, Jordão AA, Silva MLA, Bastos JK, Silva Filho AA, Cecchi AO. Mikania glomerata Sprengel (Asteraceae) influences the mutagenicity induced by doxorubicin without altering liver lipid peroxidation or antioxidant levels. J Toxicol Environ Health A 2012; 75: 1102-1109
  • 38 Rocha L, Lucio EMA, França HS, Sharapin N. Mikania glomerata Spreng: Desenvolvimento de um produto fitoterápico. Braz J Pharmacog 2008; 18: 744-747
  • 39 World Health Organization. Quality Control Methods for medicinal Plant Materials. Geneva: WHO; 1998
  • 40 Gasparetto JC, Francisco TMG, Campos FR, Pontarolo R. Simultaneous determination of coumarin, o-coumaric acid, dihydrocoumarin and syringaldehyde in guaco extracts and pharmaceutical preparations by HPLC-DAD. Pharm Anal Acta 2011; 2: 1-7
  • 41 Ferreira-Machado SC, Rodrigues MP, Nunes AP, Dantas FJ, Mattos JC, Silva CR, Moura EG, Bezerra RJ, Caldeira-de-Araújo A. Genotoxic potentiality of aqueous extract prepared from Chrysobalanus icaco L. leaves. Toxicol Lett 2004; 151: 481-487
  • 42 Ribeiro LC, Salvadori DMF, Marques EK. Mutagênese Ambiental. 1st ed.. Canoas: Ulbra; 2003