Klin Monbl Augenheilkd 2017; 234(11): 1327-1333
DOI: 10.1055/s-0043-118101
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Neuroanatomie der Sehbahn

Neuroanatomy of the Visual Pathway
Stephan Heermann
Molekulare Embryologie, Institut für Anatomie und Zellbiologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg
› Author Affiliations
Further Information

Publication History

eingereicht 19 April 2017

akzeptiert 21 July 2017

Publication Date:
07 November 2017 (online)

Zusammenfassung

Genaue Kenntnisse über die neuroanatomischen Grundlagen des visuellen Systems von der Reizaufnahme in der Retina, der Weiterleitung der visuellen Information in andere Bereiche des zentralen Nervensystems und der Verarbeitung visueller Stimuli ist von großer Bedeutung bei der Diagnostik von Erkrankungen, welche dieses System betreffen. Diese Kenntnisse erlauben bereits nach einer klinischen Untersuchung eine recht genaue topografische Zuordnung von Läsionen. Dieser Beitrag soll dazu dienen, die Neuroanatomie des visuellen Systems mit dem Schwerpunkt der Sehbahn und der Verarbeitung visueller Information darzustellen. Es sollen hier neben der retinofugalen Bahn zum visuellen Kortex auch jene Bahnen erwähnt werden, die zu anderen Zentren des zentralen Nervensystems projizieren. Die Strukturen, die im Dienste der Okulomotorik stehen, werden an anderer Stelle in dieser Ausgabe genauer besprochen.

Abstract

Precise knowledge of the neuroanatomy of the visual system including the perception of visual stimuli in the retina, the transmission of visual information to other areas of the central nervous system and the processing of visual information, are most important for diagnostics of diseases, which are affecting this system. Such knowledge allows, even after just a clinical examination, already a quite precise localisation of potential lesions. The aim of this article is to illustrate the neuroanatomy of the visual system with the focus on the visual pathway and the processing of visual information. Next to the main visual pathway, also other retinofugal projections are discussed. Domains, which are important for the oculomotor system, are discussed in another article in this edition of the journal.

 
  • Literatur

  • 1 Euler T, Haverkamp S, Schubert T. et al. Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci 2014; 15: 507-519
  • 2 Spillmann L. Receptive fields of visual neurons: the early years. Perception 2014; 43: 1145-1176
  • 3 Bach M. The Hermann grid illusion: the classic textbook interpretation is obsolete. Ophthalmologe 2009; 106: 913-917
  • 4 Wässle H. Parallel processing in the mammalian retina. Nat Rev Neurosci 2004; 5: 747-757
  • 5 Masland RH. Neuronal diversity in the retina. Curr Opin Neurobiol 2001; 11: 431-436
  • 6 Hendry SH, Yoshioka T. A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 1994; 264: 575-577
  • 7 Kim IJ, Zhang Y, Yamagata M. et al. Molecular identification of a retinal cell type that responds to upward motion. Nature 2008; 452: 478-482
  • 8 Kennedy C, Des Rosiers MH, Sakurada O. et al. Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique. Proc Natl Acad Sci U S A 1976; 73: 4230-4234
  • 9 Hubel DH, Wiesel TN. Receptive fields of single neurones in the catʼs striate cortex. J Physiol (Lond) 1959; 148: 574-591
  • 10 Kandel ER. Republication of The Journal of Physiology (2009) 587, 2733–2741: An introduction to the work of David Hubel and Torsten Wiesel. J Physiol 2014; 592: 2-10
  • 11 Wurtz RH. Recounting the impact of Hubel and Wiesel. J Physiol (Lond) 2009; 587: 2817-2823
  • 12 Ungerleider LG, Mishkin M. Two cortical visual Systems. In: Ingle DJ, Goodale MA, Mansfield RJW. eds. Analysis of visual Behaviour. Cambridge: MIT Press; 1982: 549-586
  • 13 Shipp S, Zeki S. Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 1985; 315: 322-325
  • 14 Zeki S. The visual association cortex. Curr Opin Neurobiol 1993; 3: 155-159
  • 15 Zeki SM. The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. Cold Spring Harb Symp Quant Biol 1976; 40: 591-600
  • 16 Zeki SM. Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J Physiol (Lond) 1978; 277: 273-290
  • 17 Zeki SM. Functional specialisation in the visual cortex of the rhesus monkey. Nature 1978; 274: 423-428
  • 18 Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 1988; 240: 740-749
  • 19 Quiroga RQ. Concept cells: the building blocks of declarative memory functions. Nat Rev Neurosci 2012; 13: 587-597
  • 20 Gray CM, Engel AK, König P. et al. Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 1990; 2: 607-619
  • 21 Kreiter AK, Singer W. Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Eur J Neurosci 1992; 4: 369-375
  • 22 Julelsz B. Toward an axiomatic Theory of preattentive Vision. In: Edelman G, Gall W, Cowan W. Dynamic Aspects of neocortical Function. New York: Wiley; 1984: 585-612
  • 23 Treismann A, Sykes M, Gelade G. Selective Attention Stimulus Integration. In: Dorniă S. Attention and Performance VI. Hilldale, NJ: Lawrence Erlbaum; 1977: 333-361
  • 24 Crick F, Koch C. Are we aware of neural activity in primary visual cortex?. Nature 1995; 375: 121-123
  • 25 Crick F, Koch C. Consciousness and neuroscience. Cereb Cortex 1998; 8: 97-107
  • 26 Crick F, Koch C. Some reflections on visual awareness. Cold Spring Harb Symp Quant Biol 1990; 55: 953-962
  • 27 Peirson S, Foster RG. Melanopsin: another way of signaling light. Neuron 2006; 49: 331-339
  • 28 Foster RG, Provencio I, Hudson D. et al. Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol A 1991; 169: 39-50
  • 29 Hughes S, Jagannath A, Hankins MW, Foster RG, Peirson SN. Chapter Six – Photic Regulation of Clock Systems. In: Sehgal A. ed. Methods in Enzymology, Volume 552: Circadian Rhythms and Biological Clocks Part B. Amsterdam: Elsevier; 2015: 125-143
  • 30 Riddoch G. On the relative perceptions of movement and a stationary object in certain visual disturbances due to occipital injuries. Proc R Soc Med 1917; 10: 13-34
  • 31 Zeki S, Ffytche DH. The Riddoch syndrome: insights into the neurobiology of conscious vision. Brain 1998; 121: 25-45
  • 32 Zeki S. Multiple asynchronous stimulus- and task-dependent hierarchies (STDH) within the visual brainʼs parallel processing systems. Eur J Neurosci 2016; 44: 2515-2527
  • 33 Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth A. Principles of Neural Science. 5. edition.. New York: Mcgraw-Hill Education Ltd.; 2012
  • 34 Squire L, Berg D, Bloom FE, du Lac S, Ghosh A, Spitzer NC. Fundamental Neuroscience. 4. edition. Amsterdam: Elsevier; 2012
  • 35 Bear MF, Connors BW, Paradiso MA. Neurowissenschaften – Ein grundlegendes Lehrbuch für Biologie. Heidelberg: Springer Spektrum; 2016
  • 36 Kolb H, Nelson R, Frenandez E, Jones B. Webvision. The organization of the retina and visual system. Im Internet: http://webvision.med.utah.edu/ Stand: 07.09.2017
  • 37 Aumüller G, Aust G, Engele J, Kirsch J, Maio G, Meyerhofer A, Mense S, Reißig D, Salvetter J, Schmidt W, Schmitz F, Schulte E, Spanel-Borowski K, Wennemuth G, Wolff W, Wurzinger LJ, Zilch HG. Duale Reihe Anatomie. 3. Aufl.. Stuttgart: Thieme; 2014
  • 38 Drenckhahn D, Waschke J. Benninghoff Taschenbuch Anatomie. 2. Aufl.. München: Urban & Fischer/Elsevier; 2014
  • 39 Kirsch J, Albrecht May C, Lorke D, Winkelmann A, Schwab W, Herrmann G, Funk R. Taschenlehrbuch Anatomie. Stuttgart: Thieme; 2010
  • 40 Lüllmann-Rauch R, Asan E. Taschenlehrbuch Histologie. Stuttgart: Thieme; 2015
  • 41 Welsch U, Kummer W, Deller T. Lehrbuch Histologie. München: Urban & Fischer/Elsevier; 2014