Aktuelle Neurologie 2018; 45(01): 29-43
DOI: 10.1055/s-0043-118215
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Zerebrale und spinale Bildgebung der Multiplen Sklerose: ein Update

Brain and Spinal Cord MRI in Multiple Sclerosis: an Update
Mike P. Wattjes
1   Dept. of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
2   Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Deutschland
,
Peter Raab
2   Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Deutschland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. Oktober 2017 (online)

Zusammenfassung

Die Magnetresonanztomografie spielt in der Diagnostik der Multiplen Sklerose (MS) eine entscheidende Rolle und wurde deshalb innerhalb der MS-Diagnosekriterien verankert. Insbesondere für den Ausschluss wichtiger Differenzialdiagnosen werden immer neue MRT-Marker etabliert, wie beispielsweise das sogenannte „central vein sign“. Neben der Diagnostik hat die MRT in der MS-Verlaufsbeobachtung, und hierbei insbesondere bei der Pharmakovigilanz, eine zunehmende klinische Relevanz erlangt. Dies beinhaltet nicht nur die Erfassung der Behandlungseffektivität, sondern auch die Prädiktion des Behandlungserfolges und das Sicherheitsmonitoring. Quantitative MRT-Methoden sowie der Einsatz der (Ultra-)Hochfeld-MRT bieten uns in zunehmendem Maße die Möglichkeit, die MS-Pathologie insbesondere in auf dem konventionellen MRT-Bild normal erscheinendem Gewebe zu erfassen und zu quantifizieren. Dennoch wird die Standardisierung dieser Techniken für die MS-Diagnostik und Verlaufsbeobachtung zu den großen Herausforderungen in der Zukunft zählen, um damit diese vielversprechenden Methoden in die klinische Routine zu implementieren und zu etablieren.

Abstract

Magnetic resonance imaging (MRI) plays an important role in the diagnosis of multiple sclerosis and it has been incorporated into the McDonald diagnostic criteria for MS. In particular, for the exclusion of important differential diagnosis, new MRI markers are established such as the “central vein sign”. In addition to diagnostic purposes, MS monitoring is getting increasingly important, particularly for purposes of pharmacovigilance. This includes monitoring of treatment efficacy, prediction of treatment response and safety monitoring. Quantitative MRI methods and ultra-high field MRI offer the opportunity for quantitative assessment of damage in the normal appearing brain tissue. However, the standardization of these techniques for implementation in clinical routine will be one of the major challenges in the future.

 
  • Literatur

  • 1 Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372: 1502-1517
  • 2 Wattjes MP, Steenwijk MD, Stangel M. MRI in the diagnosis and monitoring of multiple sclerosis: an update. Clin Neuroradiol 2015; 25 (Suppl. 02) 157-165
  • 3 Igra MS, Paling D, Wattjes MP. et al. Multiple sclerosis update: use of MRI for early diagnosis, disease monitoring and assessment of treatment related complications. Br J Radiol 2017; 90 20160721 DOI: 10.1259/bjr.20160721.
  • 4 Polman CH, Reingold SC, Banwell B. et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69: 292-302
  • 5 Valdueza JM, Doepp F, Schreiber SJ. et al. What went wrong? The flawed concept of cerebrospinal venous insufficiency. J Cereb Blood Flow Metab 2013; 33: 657-668
  • 6 Tintore M, Rovira À, Río J. et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015; 138: 1863-1874
  • 7 Fisniku LK, Brex PA, Altmann DR. et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 2008; 131: 808-817
  • 8 Rovira A, Wattjes MP, Tintoré M. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol 2015; 11: 471-482
  • 9 Wattjes MP, Rovira A, Miller D. et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis – establishing disease prognosis and monitoring patients. Nat Rev Neurol 2015; 11: 597-606
  • 10 Traboulsee A, Simon JH, Stone L. et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol 2016; 37: 394-401
  • 11 Kieseier BC, Wiendl H, Hartung HP. et al. Risks and benefits of multiple sclerosis therapies: need for continual assessment?. Curr Opin Neurol 2011; 24: 238-243
  • 12 Dubey D, Cano CA, Stüve O. Update on monitoring and adverse effects of first generation disease modifying therapies and their recently approved versions in relapsing forms of multiple sclerosis. Curr Opin Neurol 2016; 29: 272-277
  • 13 Dubey D, Cano CA, Stüve O. Update on monitoring and adverse effects of approved second-generation disease-modifying therapies in relapsing forms of multiple sclerosis. Curr Opin Neurol 2016; 29: 278-285
  • 14 Winkelmann A, Loebermann M, Reisinger EC. et al. Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 2016; 12: 217-233
  • 15 Sethi V, Yousry TA, Muhlert N. et al. Improved detection of cortical MS lesions with phase-sensitive inversion recovery MRI. J Neurol Neurosurg Psychiatry 2012; 83: 877-882
  • 16 Wattjes MP, Lutterbey GG, Gieseke J. et al. Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. AJNR Am J Neuroradiol 2007; 28: 54-59
  • 17 Kilsdonk ID, de Graaf WL, Barkhof F. et al. Inflammation high-field magnetic resonance imaging. Neuroimaging Clin N Am 2012; 22: 135-157
  • 18 Wattjes MP, Barkhof F. High field MRI in the diagnosis of multiple sclerosis: high field-high yield?. Neuroradiology 2009; 51: 279-292
  • 19 Filippi M, Evangelou N, Kangarlu A. et al. Ultra-high-field MR imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 2014; 85: 60-66
  • 20 Wattjes MP, Harzheim M, Lutterbey GG. et al. High field MR imaging and 1H-MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis: correlation between metabolic alterations and diagnostic MR imaging criteria. J Neurol 2008; 255: 56-63
  • 21 Enzinger C, Barkhof F, Ciccarelli O. et al. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nat Rev Neurol 2015; 11: 676-686
  • 22 Geurts JJ, Calabrese M, Fisher E. et al. Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol 2012; 11: 1082-1092
  • 23 Vigeveno RM, Wiebenga OT, Wattjes MP. et al. Shifting imaging targets in multiple sclerosis: from inflammation to neurodegeneration. J Magn Reson Imaging 2012; 36: 1-19
  • 24 Wattjes MP, Harzheim M, Lutterbey GG. et al. Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy. AJNR Am J Neuroradiol 2007; 28: 1517-1522
  • 25 Pardini M, Sudre CH, Prados F. et al. Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis. J Neurol Neurosurg Psychiatry 2016; 87: 1212-1217
  • 26 Wattjes MP, Harzheim M, Lutterbey GG. et al. Does high field MRI allow an earlier diagnosis of multiple sclerosis?. J Neurol 2008; 255: 1159-1163
  • 27 Filippi M, Rocca MA, Gasperini C. et al. Interscanner variation in brain MR lesion load measurements in multiple sclerosis using conventional spin-echo, rapid relaxation-enhanced, and fast-FLAIR sequences. AJNR Am J Neuroradiol 1999; 20: 133-137
  • 28 Wattjes MP, Lutterbey GG, Harzheim M. et al. Imaging of inflammatory lesions at 3.0 Tesla in patients with clinically isolated syndromes suggestive of multiple sclerosis: a comparison of fluid-attenuated inversion recovery with T2 turbo spin-echo. Eur Radiol 2006; 16: 1494-1500
  • 29 Vågberg M, Axelsson M, Birgander R. et al. Guidelines for the use of magnetic resonance imaging in diagnosing and monitoring the treatment of multiple sclerosis: recommendations of the Swedish Multiple Sclerosis Association and the Swedish Neuroradiological Society. Acta Neurol Scand 2017; 135: 17-24
  • 30 Petzold A, Wattjes MP, Costello F. et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol 2014; 10: 447-458
  • 31 Simon B, Schmidt S, Lukas C. et al. Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 T. Eur Radiol 2010; 20: 1675-1683
  • 32 Moraal B, Roosendaal SD, Pouwels PJ. et al. Multi-contrast, isotropic, single-slab 3D MR imaging in multiple sclerosis. Eur Radiol 2008; 18: 2311-2320
  • 33 Barkhof F, Pouwels PJ, Wattjes MP. The holy grail in diagnostic neuroradiology: 3 T or 3D?. Eur Radiol 2011; 21: 449-456
  • 34 Moraal B, Wattjes MP, Geurts JJ. et al. Improved detection of active multiple sclerosis lesions: 3D subtraction imaging. Radiology 2010; 255: 154-163
  • 35 Schmidt P, Gaser C, Arsic M. et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 2012; 59: 3774-3783
  • 36 Lukas C, Gold R, Fiehler J. et al. Ablagerung von gadoliniumhaltigen Kontrastmitteln im Gehirn nach mehrfacher Anwendung: Konsequenzen für den Einsatz der MRT bei Diagnosestellung und Verlaufsbeurteilung der Multiplen Sklerose?. Akt Neurol 2016; 43: 522-523
  • 37 Gass A, Rocca MA, Agosta A. et al. MRI monitoring of pathological changes in the spinal cord in patients with multiple sclerosis. Lancet Neurol 2015; 14: 443-454
  • 38 Stankiewicz JM, Neema M, Alsop DC. et al. Spinal cord lesions and clinical status in multiple sclerosis: A 1.5 T and 3 T MRI study. J Neurol Sci 2009; 279: 99-105
  • 39 Bot JC, Barkhof F. Spinal-cord MRI in multiple sclerosis: conventional and nonconventional MR techniques. Neuroimaging Clin N Am 2009; 19: 81-99
  • 40 Filippi M, Rocca MA, Ciccarelli O. et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 2016; 15: 292-303
  • 41 Dekker I, Wattjes MP. Brain and spinal cord MR imaging features in multiple sclerosis and variants. Neuroimag Clin N Am; 2017 [in press]
  • 42 Wallner-Blazek M, Rovira A, Fillipp M. et al. Atypical idiopathic inflammatory demyelinating lesions: prognostic implications and relation to multiple sclerosis. J Neurol 2013; 260: 2016-2022
  • 43 Charil A, Yousry TA, Rovaris M. et al. MRI and the diagnosis of multiple sclerosis: expanding the concept of “no better explanation”. Lancet Neurol 2006; 5: 841-852
  • 44 Bot JC, Barkhof F, Lycklama à Nijeholt G. et al. Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology 2002; 223: 46-56
  • 45 Kilsdonk ID, Wattjes MP, Lopez-Soriano A. et al. Improved differentiation between MS and vascular brain lesions using FLAIR* at 7 Tesla. Eur Radiol 2014; 24: 841-849
  • 46 Sinnecker T, Dörr J, Pfueller CF. et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 2012; 79: 708-714
  • 47 Kilsdonk ID, Lopez-Soriano A, Kuijer JP. et al. Morphological features of MS lesions on FLAIR* at 7 T and their relation to patient characteristics. J Neurol 2014; 261: 1356-1364
  • 48 Wuerfel J, Sinnecker T, Ringelstein EB. et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 2012; 18: 1592-1599
  • 49 Sati P, Oh J, Constable RT. et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nat Rev Neurol 2016; 12: 714-722
  • 50 de Graaf WL, Zwanenburg JJ, Visser F. et al. Lesion detection at seven Tesla in multiple sclerosis using magnetisation prepared 3D-FLAIR and 3D-DIR. Eur Radiol 2012; 22: 221-231
  • 51 Kilsdonk ID, Jonkman LE, Klaver R. et al. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain 2016; 139: 1472-1481
  • 52 Zurawski J, Lassmann H, Bakshi R. Use of magnetic resonance imaging to visualize leptomeningeal inflammation in patients with multiple sclerosis: a review. JAMA Neurol 2017; 74: 100-109
  • 53 Kilsdonk ID, Schoonheim M, Wattjes MP. In-vivo imaging of meningeal inflammation in multiple sclerosis: presence of evidence or evidence of presence?. Mult Scler 2017; 23: 1169-1171
  • 54 Giorgio A, De Stefano N. Advanced structural and functional brain MRI in multiple sclerosis. Semin Neurol 2016; 36: 163-176
  • 55 Henkelman RM, Huang X, Xiang QS. et al. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759-766
  • 56 Brown RA, Narayanan S, Arnold DL. Imaging of repeated episodes of demyelination and remyelination in multiple sclerosis. Neuroimage Clin 2014; 6: 20-25
  • 57 Schwartzbach CJ, Grove RA, Brown R. et al. Lesion remyelinating activity of GSK239512 versus placebo in patients with relapsing-remitting multiple sclerosis: a randomised, single-blind, phase II study. J Neurol 2017; 264: 304-315
  • 58 Lema A, Bishop C, Malik O. et al. A comparison of magnetization transfer methods to assess brain and cervical cord microstructure in multiple sclerosis. J Neuroimaging 2017; 27: 221-226
  • 59 Ropele S, de Graaf W, Khalil M. et al. MRI assessment of iron deposition in multiple sclerosis. J Magn Reson Imaging 2011; 34: 13-21
  • 60 Ropele S, Kilsdonk ID, Wattjes MP. et al. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Mult Scler 2014; 20: 1692-1698
  • 61 Zhang Y, Gauthier SA, Gupta A. et al. Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM). J Magn Reson Imaging 2016; 44: 426-432
  • 62 Reichenbach JR. The future of susceptibility contrast for assessment of anatomy and function. Neuroimage 2012; 62: 1311-1315
  • 63 Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 2002; 15: 435-455
  • 64 Roosendaal SD, Geurts JJ, Vrenken H. et al. Regional DTI differences in multiple sclerosis patients. Neuroimage 2009; 44: 1397-1403
  • 65 Eisele P, Szabo K, Griebe M. et al. Reduced diffusion in a subset of acute MS lesions – a serial multiparametric MRI study. AJNR Am J Neuroradiol 2012; 33: 1369-1373
  • 66 Eisele P. et al. Cerebrospinal fluid pleocytosis in multiple sclerosis patients with lesions showing reduced diffusion. Mult Scler 2014; 20: 1391-1395
  • 67 Eisele P. et al. Reduced diffusion in acute multiple sclerosis spinal cord lesions. Neurol Clin Pract 2016; DOI: 10.1212/CPJ.0000000000000309.
  • 68 Brex PA, Gomez-Anson B, Parker GJ. et al. Proton MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Sci 1999; 166: 16-22
  • 69 Fernando KT, McLean MA, Chard DT. et al. Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 2004; 127: 1361-1369
  • 70 Wattjes MP, Harzheim M, Lutterbey GG. et al. Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Neuroradiology 2008; 50: 123-129
  • 71 Prinsen H, de Graaf RA, Mason GF. et al. Reproducibility measurement of glutathione, GABA, and glutamate: Towards in vivo neurochemical profiling of multiple sclerosis with MR spectroscopy at 7T. J Magn Reson Imaging 2017; 45: 187-198
  • 72 Hattingen E, Jurcoane A, Nelles M. et al. Quantitative MR imaging of brain tissue and brain pathologies. Clin Neuroradiol 2015; 25 (Suppl. 02) 219-224
  • 73 Freedman MS, Selchen D, Arnold DL. et al. Canadian Multiple Sclerosis Working Group. Treatment optimization in MS: Canadian MS working group updated recommendations. Can J Neurol Sci 2013; 40: 307-323
  • 74 Stangel M, Penner IK, Kallmann BA. et al. Towards the implementation of ‘no evidence of disease activity’ in multiple sclerosis treatment: the multiple sclerosis decision model. Ther Adv Neurol Disord 2015; 8: 3-13
  • 75 Moraal B, Wattjes MP, Geurts JJ. et al. Improved detection of active multiple sclerosis lesions: 3D subtraction imaging. Radiology 2010; 255: 154-163
  • 76 Battaglini M, Rossi F, Grove RA. et al. Automated identification of brain new lesions in multiple sclerosis using subtraction images. J Magn Reson Imaging 2014; 39: 1543-1549
  • 77 Barkhof F, Calabresi PA, Miller DH. et al. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 2009; 5: 256-266
  • 78 De Stefano N, Airas L, Grigoriadis N. et al. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 2014; 28: 147-156
  • 79 Popescu V, Agosta F, Hulst HE. et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry 2013; 84: 1082-1091
  • 80 Calabrese M, Rinaldi F, Mattisi I. et al. Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 2010; 74: 321-328
  • 81 Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F. et al. Early brain pseudoatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler 2013; 19: 1175-1181
  • 82 De Stefano N, Arnold DL. Towards a better understanding of pseudoatrophy in the brain of multiple sclerosis patients. Mult Scler 2015; 21: 675-676
  • 83 Absinta M, Sati P, Reich DS. Advanced MRI and staging of multiple sclerosis lesions. Nat Rev Neurol 2016; 12: 358-368
  • 84 Mallik S, Samson RS, Wheeler-Kingshott CA. et al. Imaging outcomes for trials of remyelination in multiple sclerosis. J Neurol Neurosurg Psychiatry 2014; 85: 1396-1404
  • 85 Healy BC, Glanz BI, Stankiewicz J. et al. A method for evaluating treatment switching criteria in multiple sclerosis. Mult Scler 2010; 16: 1483-1489
  • 86 Río J, Castilló J, Rovira A. et al. Measures in the first year of therapy predict the response to interferon β in MS. Mult Scler 2009; 15: 848-853
  • 87 Río J, Comabella M, Montalban X. Predicting responders to therapies for multiple sclerosis. Nat Rev Neurol 2009; 5: 553-560
  • 88 Dhib-Jalbut S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002; 58 (Suppl. 04) S3-S9
  • 89 Visser F, Wattjes MP, Pouwels PJ. et al. Tumefactive multiple sclerosis lesions under fingolimod treatment. Neurology 2012; 79: 2000-2003
  • 90 Pilz G, Harrer A, Wipfler P. et al. Tumefactive MS lesions under fingolimod: a case report and literature review. Neurology 2013; 81: 1654-1658
  • 91 Maas RP, Muller-Hansma AH, Esselink RA. et al. Drug-associated progressive multifocal leukoencephalopathy: a clinical, radiological, and cerebrospinal fluid analysis of 326 cases. J Neurol 2016; 263: 2004-2021
  • 92 Brew BJ, Davies NW, Cinque P. et al. Progressive multifocal leukoencephalopathy and other forms of JC virus disease. Nat Rev Neurol 2010; 6: 667-679
  • 93 Warnke C, Wattjes MP, Adams O. et al. Progressive mutifokale Leukoencephalopathie. Nervenarzt 2016; 87: 1300-1304
  • 94 D'Amico E, Zanghì A, Leone C. et al. Treatment-related progressive multifocal leukoencephalopathy in multiple sclerosis: a comprehensive review of current evidence and future needs. Drug Saf 2016; 39: 1163-1174
  • 95 https://medinfo.biogen.com/ Assessed 1-OCT-2017
  • 96 Yousry TA, Pelletier D, Cadavid D. et al. Magnetic resonance imaging pattern in natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol 2012; 72: 779-787
  • 97 Wattjes MP, Barkhof F. Diagnosis of natalizumab-associated progressive multifocal leukoencephalopathy using MRI. Curr Opin Neurol 2014; 27: 260-270
  • 98 Wattjes MP, Vennegoor A, Steenwijk MD. et al. MRI pattern in asymptomatic natalizumab-associated PML. J Neurol Neurosurg Psychiatry 2015; 86: 793-798
  • 99 Wattjes MP, Vennegoor A, Mostert J. et al. Diagnosis of asymptomatic natalizumab-associated PML: are we between a rock and a hard place?. J Neurol 2014; 261: 1139-1143
  • 100 Dong-Si T, Richman S, Wattjes MP. et al. Outcome and survival of asymptomatic PML in natalizumab-treated MS patients. Ann Clin Transl Neurol 2014; 1: 755-764
  • 101 McGuigan C, Craner M, Guadagno J. et al. Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. J Neurol Neurosurg Psychiatry 2016; 87: 117-125
  • 102 http://www.ema.europa.eu/ Accessed at 28-FEB-2017
  • 103 Wattjes MP, Wijburg MT, Vennegoor A. et al. Diagnostic performance of brain MRI in pharmacovigilance of natalizumab-treated MS patients. Mult Scler 2016; 22: 1174-1183
  • 104 Wijburg MT, Witte BI, Vennegoor A. et al. MR imaging criteria differentiating asymptomatic PML from new MS lesions during natalizumab pharmacovigilance. J Neurol Neurosurg Psychiatry 2016; 87: 1138-1145
  • 105 Warnke C, von Geldern G, Markwerth P. et al. Cerebrospinal fluid JC virus antibody index for diagnosis of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol 2014; 76: 792-801
  • 106 Warnke C, Wijburg MT, Hartung HP. et al. Application of the CSF JCV antibody index to early natalizumab-associated progressive multifocal leukoencephalopathy. J Neurol Neurosurg Psychiatry 2017; May 10. pii: jnnp-2016-315298. DOI: 10.1136/jnnp-2016-315298.
  • 107 Arvin AM, Wolinsky JS, Kappos L. et al. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol 2015; 72: 31-39
  • 108 Gundacker ND, Jordan SJ, Jones BA. et al. Acute cryptococcal immune reconstitution inflammatory syndrome in a patient on natalizumab. Open Forum Infect Dis 2016; 3 ofw038 DOI: 10.1093/ofid/ofw038.